Properties

Label 8640.bu
Number of curves $2$
Conductor $8640$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bu1")
 
E.isogeny_class()
 

Elliptic curves in class 8640.bu

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8640.bu1 8640cb1 \([0, 0, 0, -2592, -50976]\) \(-5971968/25\) \(-8062156800\) \([]\) \(6912\) \(0.75584\) \(\Gamma_0(N)\)-optimal
8640.bu2 8640cb2 \([0, 0, 0, 6048, -268704]\) \(8429568/15625\) \(-45349632000000\) \([]\) \(20736\) \(1.3051\)  

Rank

sage: E.rank()
 

The elliptic curves in class 8640.bu have rank \(0\).

Complex multiplication

The elliptic curves in class 8640.bu do not have complex multiplication.

Modular form 8640.2.a.bu

sage: E.q_eigenform(10)
 
\(q + q^{5} + q^{7} - 6 q^{11} + q^{13} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.