Show commands:
SageMath
E = EllipticCurve("g1")
E.isogeny_class()
Elliptic curves in class 8640.g
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
8640.g1 | 8640bw2 | \([0, 0, 0, -1188, 15768]\) | \(-9199872/5\) | \(-100776960\) | \([]\) | \(3456\) | \(0.48440\) | |
8640.g2 | 8640bw1 | \([0, 0, 0, 12, 88]\) | \(6912/125\) | \(-3456000\) | \([]\) | \(1152\) | \(-0.064910\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 8640.g have rank \(1\).
Complex multiplication
The elliptic curves in class 8640.g do not have complex multiplication.Modular form 8640.2.a.g
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.