Properties

Label 8640bl
Number of curves 22
Conductor 86408640
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bl1") E.isogeny_class()
 

Elliptic curves in class 8640bl

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8640.bl1 8640bl1 [0,0,0,132,584][0, 0, 0, -132, -584] 9199872/5-9199872/5 138240-138240 [][] 11521152 0.064910-0.064910 Γ0(N)\Gamma_0(N)-optimal
8640.bl2 8640bl2 [0,0,0,108,2376][0, 0, 0, 108, -2376] 6912/1256912/125 2519424000-2519424000 [][] 34563456 0.484400.48440  

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 8640bl have rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
3311
551T1 - T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
77 1+2T+7T2 1 + 2 T + 7 T^{2} 1.7.c
1111 1+11T2 1 + 11 T^{2} 1.11.a
1313 1+2T+13T2 1 + 2 T + 13 T^{2} 1.13.c
1717 13T+17T2 1 - 3 T + 17 T^{2} 1.17.ad
1919 15T+19T2 1 - 5 T + 19 T^{2} 1.19.af
2323 13T+23T2 1 - 3 T + 23 T^{2} 1.23.ad
2929 1+6T+29T2 1 + 6 T + 29 T^{2} 1.29.g
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 8640bl do not have complex multiplication.

Modular form 8640.2.a.bl

Copy content sage:E.q_eigenform(10)
 
q+q52q72q13+3q17+5q19+O(q20)q + q^{5} - 2 q^{7} - 2 q^{13} + 3 q^{17} + 5 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1331)\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.