sage:E = EllipticCurve("bl1")
E.isogeny_class()
Elliptic curves in class 8640bl
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
8640.bl1 |
8640bl1 |
[0,0,0,−132,−584] |
−9199872/5 |
−138240 |
[] |
1152 |
−0.064910
|
Γ0(N)-optimal |
8640.bl2 |
8640bl2 |
[0,0,0,108,−2376] |
6912/125 |
−2519424000 |
[] |
3456 |
0.48440
|
|
sage:E.rank()
The elliptic curves in class 8640bl have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1 |
5 | 1−T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
7 |
1+2T+7T2 |
1.7.c
|
11 |
1+11T2 |
1.11.a
|
13 |
1+2T+13T2 |
1.13.c
|
17 |
1−3T+17T2 |
1.17.ad
|
19 |
1−5T+19T2 |
1.19.af
|
23 |
1−3T+23T2 |
1.23.ad
|
29 |
1+6T+29T2 |
1.29.g
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 8640bl do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
(1331)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.