Properties

Label 8640bt
Number of curves $1$
Conductor $8640$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bt1")
 
E.isogeny_class()
 

Elliptic curves in class 8640bt

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8640.q1 8640bt1 \([0, 0, 0, 432, -2592]\) \(27648/25\) \(-8062156800\) \([]\) \(4608\) \(0.58822\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 8640bt1 has rank \(1\).

Complex multiplication

The elliptic curves in class 8640bt do not have complex multiplication.

Modular form 8640.2.a.bt

sage: E.q_eigenform(10)
 
\(q - q^{5} + q^{7} - 2 q^{11} + 5 q^{13} - 4 q^{17} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display