Show commands:
SageMath
E = EllipticCurve("bw1")
E.isogeny_class()
Elliptic curves in class 86490.bw
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
86490.bw1 | 86490bw1 | \([1, -1, 1, -684893, -256004379]\) | \(-1482713947827/325058560\) | \(-7789248050595102720\) | \([]\) | \(1935360\) | \(2.3456\) | \(\Gamma_0(N)\)-optimal |
86490.bw2 | 86490bw2 | \([1, -1, 1, 4850467, 1537698277]\) | \(722458663317/476656000\) | \(-8326577327815796688000\) | \([]\) | \(5806080\) | \(2.8950\) |
Rank
sage: E.rank()
The elliptic curves in class 86490.bw have rank \(1\).
Complex multiplication
The elliptic curves in class 86490.bw do not have complex multiplication.Modular form 86490.2.a.bw
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.