Show commands:
SageMath
E = EllipticCurve("ee1")
E.isogeny_class()
Elliptic curves in class 86640ee
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
86640.do2 | 86640ee1 | \([0, 1, 0, -3445, -76957]\) | \(3058794496/91125\) | \(134742528000\) | \([]\) | \(93312\) | \(0.91239\) | \(\Gamma_0(N)\)-optimal |
86640.do1 | 86640ee2 | \([0, 1, 0, -277045, -56219677]\) | \(1590409933520896/45\) | \(66539520\) | \([]\) | \(279936\) | \(1.4617\) |
Rank
sage: E.rank()
The elliptic curves in class 86640ee have rank \(1\).
Complex multiplication
The elliptic curves in class 86640ee do not have complex multiplication.Modular form 86640.2.a.ee
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.