Properties

Label 86640ee
Number of curves $2$
Conductor $86640$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("ee1")
 
E.isogeny_class()
 

Elliptic curves in class 86640ee

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
86640.do2 86640ee1 \([0, 1, 0, -3445, -76957]\) \(3058794496/91125\) \(134742528000\) \([]\) \(93312\) \(0.91239\) \(\Gamma_0(N)\)-optimal
86640.do1 86640ee2 \([0, 1, 0, -277045, -56219677]\) \(1590409933520896/45\) \(66539520\) \([]\) \(279936\) \(1.4617\)  

Rank

sage: E.rank()
 

The elliptic curves in class 86640ee have rank \(1\).

Complex multiplication

The elliptic curves in class 86640ee do not have complex multiplication.

Modular form 86640.2.a.ee

sage: E.q_eigenform(10)
 
\(q + q^{3} + q^{5} - 2 q^{7} + q^{9} + 3 q^{11} + 4 q^{13} + q^{15} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.