Properties

Label 8670b2
Conductor 86708670
Discriminant 3.002×10193.002\times 10^{19}
j-invariant 451747330217253125000 \frac{451747330217}{253125000}
CM no
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3+x2785363x48068283y^2+xy=x^3+x^2-785363x-48068283 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3+x2z785363xz248068283z3y^2z+xyz=x^3+x^2z-785363xz^2-48068283z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x31017831123x2227406348178y^2=x^3-1017831123x-2227406348178 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 1, 0, -785363, -48068283])
 
gp: E = ellinit([1, 1, 0, -785363, -48068283])
 
magma: E := EllipticCurve([1, 1, 0, -785363, -48068283]);
 
oscar: E = elliptic_curve([1, 1, 0, -785363, -48068283])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(208489,95092500)(208489, 95092500)7.99987458934158714729002910157.9998745893415871472900291015\infty
(3659/4,3659/8)(3659/4, -3659/8)0022

Integral points

(208489,95092500) \left(208489, 95092500\right) , (208489,95300989) \left(208489, -95300989\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  8670 8670  = 2351722 \cdot 3 \cdot 5 \cdot 17^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  3001755623830312500030017556238303125000 = 2334581792^{3} \cdot 3^{4} \cdot 5^{8} \cdot 17^{9}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  451747330217253125000 \frac{451747330217}{253125000}  = 233458767332^{-3} \cdot 3^{-4} \cdot 5^{-8} \cdot 7673^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.42755806210217237994941658912.4275580621021723799494165891
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.302648054060010319762265625690.30264805406001031976226562569
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.05419822587119061.0541982258711906
Szpiro ratio: σm\sigma_{m} ≈ 5.7716672581839785.771667258183978

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 7.99987458934158714729002910157.9998745893415871472900291015
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.172364929240665014188592638910.17236492924066501418859263891
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 8 8  = 1222 1\cdot2\cdot2\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 2.75779563505211351388162637962.7577956350521135138816263796
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

2.757795635L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.1723657.9998758222.757795635\displaystyle 2.757795635 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.172365 \cdot 7.999875 \cdot 8}{2^2} \approx 2.757795635

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   8670.2.a.d

qq2q3+q4q5+q6+2q7q8+q9+q10q12+2q132q14+q15+q16q18+O(q20) q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} + 2 q^{7} - q^{8} + q^{9} + q^{10} - q^{12} + 2 q^{13} - 2 q^{14} + q^{15} + q^{16} - q^{18} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 208896
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 I3I_{3} nonsplit multiplicative 1 1 3 3
33 22 I4I_{4} nonsplit multiplicative 1 1 4 4
55 22 I8I_{8} nonsplit multiplicative 1 1 8 8
1717 22 IIIIII^{*} additive 1 2 9 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 8.6.0.2

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 2, 2, 5], [3, 4, 8, 11], [133, 4, 132, 5], [121, 18, 16, 119], [2, 1, 67, 0], [12, 1, 31, 0], [1, 4, 0, 1], [1, 0, 4, 1]]
 
GL(2,Integers(136)).subgroup(gens)
 
Gens := [[1, 2, 2, 5], [3, 4, 8, 11], [133, 4, 132, 5], [121, 18, 16, 119], [2, 1, 67, 0], [12, 1, 31, 0], [1, 4, 0, 1], [1, 0, 4, 1]];
 
sub<GL(2,Integers(136))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 136=2317 136 = 2^{3} \cdot 17 , index 1212, genus 00, and generators

(1225),(34811),(13341325),(1211816119),(21670),(121310),(1401),(1041)\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 133 & 4 \\ 132 & 5 \end{array}\right),\left(\begin{array}{rr} 121 & 18 \\ 16 & 119 \end{array}\right),\left(\begin{array}{rr} 2 & 1 \\ 67 & 0 \end{array}\right),\left(\begin{array}{rr} 12 & 1 \\ 31 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[136])K:=\Q(E[136]) is a degree-1002700810027008 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/136Z)\GL_2(\Z/136\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 17 17
33 nonsplit multiplicative 44 1445=5172 1445 = 5 \cdot 17^{2}
55 nonsplit multiplicative 66 1734=23172 1734 = 2 \cdot 3 \cdot 17^{2}
1717 additive 9898 30=235 30 = 2 \cdot 3 \cdot 5

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 8670b consists of 2 curves linked by isogenies of degree 2.

Twists

The minimal quadratic twist of this elliptic curve is 8670k2, its twist by 1717.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(34)\Q(\sqrt{34}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
44 4.4.157216.1 Z/4Z\Z/4\Z not in database
88 8.8.1581879721984.1 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.101240302206976.41 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/8Z\Z/8\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type nonsplit nonsplit nonsplit ord ss ord add ss ord ord ord ord ord ord ord
λ\lambda-invariant(s) 8 1 1 1 1,1 1 - 1,1 1 1 1 1 1 1 1
μ\mu-invariant(s) 0 0 0 0 0,0 0 - 0,0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.