Show commands:
SageMath
E = EllipticCurve("e1")
E.isogeny_class()
Elliptic curves in class 8670e
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
8670.g8 | 8670e1 | \([1, 1, 0, 428, 10624]\) | \(357911/2160\) | \(-52137149040\) | \([2]\) | \(9216\) | \(0.73832\) | \(\Gamma_0(N)\)-optimal |
8670.g6 | 8670e2 | \([1, 1, 0, -5352, 134316]\) | \(702595369/72900\) | \(1759628780100\) | \([2, 2]\) | \(18432\) | \(1.0849\) | |
8670.g7 | 8670e3 | \([1, 1, 0, -3907, -309299]\) | \(-273359449/1536000\) | \(-37075305984000\) | \([2]\) | \(27648\) | \(1.2876\) | |
8670.g5 | 8670e4 | \([1, 1, 0, -19802, -932094]\) | \(35578826569/5314410\) | \(128276938069290\) | \([2]\) | \(36864\) | \(1.4315\) | |
8670.g4 | 8670e5 | \([1, 1, 0, -83382, 9232614]\) | \(2656166199049/33750\) | \(814642953750\) | \([2]\) | \(36864\) | \(1.4315\) | |
8670.g3 | 8670e6 | \([1, 1, 0, -96387, -11536371]\) | \(4102915888729/9000000\) | \(217238121000000\) | \([2, 2]\) | \(55296\) | \(1.6342\) | |
8670.g1 | 8670e7 | \([1, 1, 0, -1541387, -737215371]\) | \(16778985534208729/81000\) | \(1955143089000\) | \([2]\) | \(110592\) | \(1.9808\) | |
8670.g2 | 8670e8 | \([1, 1, 0, -131067, -2540379]\) | \(10316097499609/5859375000\) | \(141431068359375000\) | \([2]\) | \(110592\) | \(1.9808\) |
Rank
sage: E.rank()
The elliptic curves in class 8670e have rank \(0\).
Complex multiplication
The elliptic curves in class 8670e do not have complex multiplication.Modular form 8670.2.a.e
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 3 & 4 & 4 & 6 & 12 & 12 \\ 2 & 1 & 6 & 2 & 2 & 3 & 6 & 6 \\ 3 & 6 & 1 & 12 & 12 & 2 & 4 & 4 \\ 4 & 2 & 12 & 1 & 4 & 6 & 3 & 12 \\ 4 & 2 & 12 & 4 & 1 & 6 & 12 & 3 \\ 6 & 3 & 2 & 6 & 6 & 1 & 2 & 2 \\ 12 & 6 & 4 & 3 & 12 & 2 & 1 & 4 \\ 12 & 6 & 4 & 12 & 3 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.