Properties

Label 8670e
Number of curves 88
Conductor 86708670
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("e1")
 
E.isogeny_class()
 

Elliptic curves in class 8670e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8670.g8 8670e1 [1,1,0,428,10624][1, 1, 0, 428, 10624] 357911/2160357911/2160 52137149040-52137149040 [2][2] 92169216 0.738320.73832 Γ0(N)\Gamma_0(N)-optimal
8670.g6 8670e2 [1,1,0,5352,134316][1, 1, 0, -5352, 134316] 702595369/72900702595369/72900 17596287801001759628780100 [2,2][2, 2] 1843218432 1.08491.0849  
8670.g7 8670e3 [1,1,0,3907,309299][1, 1, 0, -3907, -309299] 273359449/1536000-273359449/1536000 37075305984000-37075305984000 [2][2] 2764827648 1.28761.2876  
8670.g5 8670e4 [1,1,0,19802,932094][1, 1, 0, -19802, -932094] 35578826569/531441035578826569/5314410 128276938069290128276938069290 [2][2] 3686436864 1.43151.4315  
8670.g4 8670e5 [1,1,0,83382,9232614][1, 1, 0, -83382, 9232614] 2656166199049/337502656166199049/33750 814642953750814642953750 [2][2] 3686436864 1.43151.4315  
8670.g3 8670e6 [1,1,0,96387,11536371][1, 1, 0, -96387, -11536371] 4102915888729/90000004102915888729/9000000 217238121000000217238121000000 [2,2][2, 2] 5529655296 1.63421.6342  
8670.g1 8670e7 [1,1,0,1541387,737215371][1, 1, 0, -1541387, -737215371] 16778985534208729/8100016778985534208729/81000 19551430890001955143089000 [2][2] 110592110592 1.98081.9808  
8670.g2 8670e8 [1,1,0,131067,2540379][1, 1, 0, -131067, -2540379] 10316097499609/585937500010316097499609/5859375000 141431068359375000141431068359375000 [2][2] 110592110592 1.98081.9808  

Rank

sage: E.rank()
 

The elliptic curves in class 8670e have rank 00.

Complex multiplication

The elliptic curves in class 8670e do not have complex multiplication.

Modular form 8670.2.a.e

sage: E.q_eigenform(10)
 
qq2q3+q4+q5+q6+4q7q8+q9q10q12+2q134q14q15+q16q184q19+O(q20)q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} + 4 q^{7} - q^{8} + q^{9} - q^{10} - q^{12} + 2 q^{13} - 4 q^{14} - q^{15} + q^{16} - q^{18} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1234461212216223663611212244421214631242124161236326612212643122141264123241)\left(\begin{array}{rrrrrrrr} 1 & 2 & 3 & 4 & 4 & 6 & 12 & 12 \\ 2 & 1 & 6 & 2 & 2 & 3 & 6 & 6 \\ 3 & 6 & 1 & 12 & 12 & 2 & 4 & 4 \\ 4 & 2 & 12 & 1 & 4 & 6 & 3 & 12 \\ 4 & 2 & 12 & 4 & 1 & 6 & 12 & 3 \\ 6 & 3 & 2 & 6 & 6 & 1 & 2 & 2 \\ 12 & 6 & 4 & 3 & 12 & 2 & 1 & 4 \\ 12 & 6 & 4 & 12 & 3 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.