Properties

Label 8670e
Number of curves $8$
Conductor $8670$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("e1")
 
E.isogeny_class()
 

Elliptic curves in class 8670e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8670.g8 8670e1 \([1, 1, 0, 428, 10624]\) \(357911/2160\) \(-52137149040\) \([2]\) \(9216\) \(0.73832\) \(\Gamma_0(N)\)-optimal
8670.g6 8670e2 \([1, 1, 0, -5352, 134316]\) \(702595369/72900\) \(1759628780100\) \([2, 2]\) \(18432\) \(1.0849\)  
8670.g7 8670e3 \([1, 1, 0, -3907, -309299]\) \(-273359449/1536000\) \(-37075305984000\) \([2]\) \(27648\) \(1.2876\)  
8670.g5 8670e4 \([1, 1, 0, -19802, -932094]\) \(35578826569/5314410\) \(128276938069290\) \([2]\) \(36864\) \(1.4315\)  
8670.g4 8670e5 \([1, 1, 0, -83382, 9232614]\) \(2656166199049/33750\) \(814642953750\) \([2]\) \(36864\) \(1.4315\)  
8670.g3 8670e6 \([1, 1, 0, -96387, -11536371]\) \(4102915888729/9000000\) \(217238121000000\) \([2, 2]\) \(55296\) \(1.6342\)  
8670.g1 8670e7 \([1, 1, 0, -1541387, -737215371]\) \(16778985534208729/81000\) \(1955143089000\) \([2]\) \(110592\) \(1.9808\)  
8670.g2 8670e8 \([1, 1, 0, -131067, -2540379]\) \(10316097499609/5859375000\) \(141431068359375000\) \([2]\) \(110592\) \(1.9808\)  

Rank

sage: E.rank()
 

The elliptic curves in class 8670e have rank \(0\).

Complex multiplication

The elliptic curves in class 8670e do not have complex multiplication.

Modular form 8670.2.a.e

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} + 4 q^{7} - q^{8} + q^{9} - q^{10} - q^{12} + 2 q^{13} - 4 q^{14} - q^{15} + q^{16} - q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 3 & 4 & 4 & 6 & 12 & 12 \\ 2 & 1 & 6 & 2 & 2 & 3 & 6 & 6 \\ 3 & 6 & 1 & 12 & 12 & 2 & 4 & 4 \\ 4 & 2 & 12 & 1 & 4 & 6 & 3 & 12 \\ 4 & 2 & 12 & 4 & 1 & 6 & 12 & 3 \\ 6 & 3 & 2 & 6 & 6 & 1 & 2 & 2 \\ 12 & 6 & 4 & 3 & 12 & 2 & 1 & 4 \\ 12 & 6 & 4 & 12 & 3 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.