Properties

Label 8670p1
Conductor 86708670
Discriminant 6414412800-6414412800
j-invariant 204870740572976800 -\frac{2048707405729}{76800}
CM no
Rank 11
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x3+x211566x+473963y^2+xy+y=x^3+x^2-11566x+473963 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x3+x2z11566xz2+473963z3y^2z+xyz+yz^2=x^3+x^2z-11566xz^2+473963z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x314989563x+22338069462y^2=x^3-14989563x+22338069462 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 1, 1, -11566, 473963])
 
gp: E = ellinit([1, 1, 1, -11566, 473963])
 
magma: E := EllipticCurve([1, 1, 1, -11566, 473963]);
 
oscar: E = elliptic_curve([1, 1, 1, -11566, 473963])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(1,679)(1, 679)0.0633963280440281539107259939470.063396328044028153910725993947\infty

Integral points

(1,679) \left(1, 679\right) , (1,681) \left(1, -681\right) , (33,343) \left(33, 343\right) , (33,377) \left(33, -377\right) , (61,21) \left(61, -21\right) , (61,41) \left(61, -41\right) , (69,67) \left(69, 67\right) , (69,137) \left(69, -137\right) , (1021,31959) \left(1021, 31959\right) , (1021,32981) \left(1021, -32981\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  8670 8670  = 2351722 \cdot 3 \cdot 5 \cdot 17^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  6414412800-6414412800 = 1210352174-1 \cdot 2^{10} \cdot 3 \cdot 5^{2} \cdot 17^{4}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  204870740572976800 -\frac{2048707405729}{76800}  = 121031521751133-1 \cdot 2^{-10} \cdot 3^{-1} \cdot 5^{-2} \cdot 17^{5} \cdot 113^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.968301969370190062893941450660.96830196937019006289394145066
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.0238975213514513694774299113700.023897521351451369477429911370
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.12779900660728341.1277990066072834
Szpiro ratio: σm\sigma_{m} ≈ 4.37613514001318654.3761351400131865

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 0.0633963280440281539107259939470.063396328044028153910725993947
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 1.25285555169375908513714865351.2528555516937590851371486535
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 60 60  = (25)123 ( 2 \cdot 5 )\cdot1\cdot2\cdot3
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 4.76558649281756541433289716554.7655864928175654143328971655
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

4.765586493L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor211.2528560.06339660124.765586493\displaystyle 4.765586493 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 1.252856 \cdot 0.063396 \cdot 60}{1^2} \approx 4.765586493

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   8670.2.a.o

q+q2q3+q4q5q6q7+q8+q9q106q11q12+q13q14+q15+q16+q18+7q19+O(q20) q + q^{2} - q^{3} + q^{4} - q^{5} - q^{6} - q^{7} + q^{8} + q^{9} - q^{10} - 6 q^{11} - q^{12} + q^{13} - q^{14} + q^{15} + q^{16} + q^{18} + 7 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 15840
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 1010 I10I_{10} split multiplicative -1 1 10 10
33 11 I1I_{1} nonsplit multiplicative 1 1 1 1
55 22 I2I_{2} nonsplit multiplicative 1 1 2 2
1717 33 IVIV additive -1 2 4 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell.

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[5, 2, 5, 3], [1, 1, 5, 0], [1, 2, 0, 1], [5, 2, 4, 3], [1, 0, 2, 1]]
 
GL(2,Integers(6)).subgroup(gens)
 
Gens := [[5, 2, 5, 3], [1, 1, 5, 0], [1, 2, 0, 1], [5, 2, 4, 3], [1, 0, 2, 1]];
 
sub<GL(2,Integers(6))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has label 6.2.0.a.1, level 6=23 6 = 2 \cdot 3 , index 22, genus 00, and generators

(5253),(1150),(1201),(5243),(1021)\left(\begin{array}{rr} 5 & 2 \\ 5 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 5 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 2 \\ 4 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[6])K:=\Q(E[6]) is a degree-144144 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/6Z)\GL_2(\Z/6\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 split multiplicative 44 867=3172 867 = 3 \cdot 17^{2}
33 nonsplit multiplicative 44 2890=25172 2890 = 2 \cdot 5 \cdot 17^{2}
55 nonsplit multiplicative 66 867=3172 867 = 3 \cdot 17^{2}
1717 additive 114114 30=235 30 = 2 \cdot 3 \cdot 5

Isogenies

gp: ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 8670p consists of this curve only.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.867.1 Z/2Z\Z/2\Z not in database
66 6.0.2255067.2 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 8.2.147954945870000.8 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type split nonsplit nonsplit ord ord ord add ord ord ord ord ord ord ord ord
λ\lambda-invariant(s) 2 3 1 1 1 1 - 1 1 1 1 1 1 1 3
μ\mu-invariant(s) 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.