Properties

Label 8670r
Number of curves 44
Conductor 86708670
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("r1")
 
E.isogeny_class()
 

Elliptic curves in class 8670r

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8670.r4 8670r1 [1,1,1,1150,1153][1, 1, 1, 1150, -1153] 6967871/40806967871/4080 98481281520-98481281520 [4][4] 92169216 0.798830.79883 Γ0(N)\Gamma_0(N)-optimal
8670.r3 8670r2 [1,1,1,4630,15025][1, 1, 1, -4630, -15025] 454756609/260100454756609/260100 62781816969006278181696900 [2,2][2, 2] 1843218432 1.14541.1454  
8670.r1 8670r3 [1,1,1,53760,4810113][1, 1, 1, -53760, -4810113] 711882749089/1721250711882749089/1721250 4154679064125041546790641250 [2][2] 3686436864 1.49201.4920  
8670.r2 8670r4 [1,1,1,47980,4007855][1, 1, 1, -47980, 4007855] 506071034209/2505630506071034209/2505630 6047981701347060479817013470 [2][2] 3686436864 1.49201.4920  

Rank

sage: E.rank()
 

The elliptic curves in class 8670r have rank 11.

Complex multiplication

The elliptic curves in class 8670r do not have complex multiplication.

Modular form 8670.2.a.r

sage: E.q_eigenform(10)
 
q+q2q3+q4+q5q6+q8+q9+q104q11q12+2q13q15+q16+q184q19+O(q20)q + q^{2} - q^{3} + q^{4} + q^{5} - q^{6} + q^{8} + q^{9} + q^{10} - 4 q^{11} - q^{12} + 2 q^{13} - q^{15} + q^{16} + q^{18} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.