E = EllipticCurve("r1")
E.isogeny_class()
Elliptic curves in class 8670r
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
8670.r4 |
8670r1 |
[1,1,1,1150,−1153] |
6967871/4080 |
−98481281520 |
[4] |
9216 |
0.79883
|
Γ0(N)-optimal |
8670.r3 |
8670r2 |
[1,1,1,−4630,−15025] |
454756609/260100 |
6278181696900 |
[2,2] |
18432 |
1.1454
|
|
8670.r1 |
8670r3 |
[1,1,1,−53760,−4810113] |
711882749089/1721250 |
41546790641250 |
[2] |
36864 |
1.4920
|
|
8670.r2 |
8670r4 |
[1,1,1,−47980,4007855] |
506071034209/2505630 |
60479817013470 |
[2] |
36864 |
1.4920
|
|
The elliptic curves in class 8670r have
rank 1.
The elliptic curves in class 8670r do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.