Show commands:
SageMath
E = EllipticCurve("r1")
E.isogeny_class()
Elliptic curves in class 8670r
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
8670.r4 | 8670r1 | \([1, 1, 1, 1150, -1153]\) | \(6967871/4080\) | \(-98481281520\) | \([4]\) | \(9216\) | \(0.79883\) | \(\Gamma_0(N)\)-optimal |
8670.r3 | 8670r2 | \([1, 1, 1, -4630, -15025]\) | \(454756609/260100\) | \(6278181696900\) | \([2, 2]\) | \(18432\) | \(1.1454\) | |
8670.r1 | 8670r3 | \([1, 1, 1, -53760, -4810113]\) | \(711882749089/1721250\) | \(41546790641250\) | \([2]\) | \(36864\) | \(1.4920\) | |
8670.r2 | 8670r4 | \([1, 1, 1, -47980, 4007855]\) | \(506071034209/2505630\) | \(60479817013470\) | \([2]\) | \(36864\) | \(1.4920\) |
Rank
sage: E.rank()
The elliptic curves in class 8670r have rank \(1\).
Complex multiplication
The elliptic curves in class 8670r do not have complex multiplication.Modular form 8670.2.a.r
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.