Properties

Label 8670r
Number of curves $4$
Conductor $8670$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("r1")
 
E.isogeny_class()
 

Elliptic curves in class 8670r

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8670.r4 8670r1 \([1, 1, 1, 1150, -1153]\) \(6967871/4080\) \(-98481281520\) \([4]\) \(9216\) \(0.79883\) \(\Gamma_0(N)\)-optimal
8670.r3 8670r2 \([1, 1, 1, -4630, -15025]\) \(454756609/260100\) \(6278181696900\) \([2, 2]\) \(18432\) \(1.1454\)  
8670.r1 8670r3 \([1, 1, 1, -53760, -4810113]\) \(711882749089/1721250\) \(41546790641250\) \([2]\) \(36864\) \(1.4920\)  
8670.r2 8670r4 \([1, 1, 1, -47980, 4007855]\) \(506071034209/2505630\) \(60479817013470\) \([2]\) \(36864\) \(1.4920\)  

Rank

sage: E.rank()
 

The elliptic curves in class 8670r have rank \(1\).

Complex multiplication

The elliptic curves in class 8670r do not have complex multiplication.

Modular form 8670.2.a.r

sage: E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} + q^{5} - q^{6} + q^{8} + q^{9} + q^{10} - 4 q^{11} - q^{12} + 2 q^{13} - q^{15} + q^{16} + q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.