Properties

Label 8670t1
Conductor 86708670
Discriminant 5.062×1020-5.062\times 10^{20}
j-invariant 458935221239972559411200 \frac{4589352212399}{72559411200}
CM no
Rank 00
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x3+x2+661515x+1062713115y^2+xy+y=x^3+x^2+661515x+1062713115 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x3+x2z+661515xz2+1062713115z3y^2z+xyz+yz^2=x^3+x^2z+661515xz^2+1062713115z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3+857323413x+49569083250534y^2=x^3+857323413x+49569083250534 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 1, 1, 661515, 1062713115])
 
gp: E = ellinit([1, 1, 1, 661515, 1062713115])
 
magma: E := EllipticCurve([1, 1, 1, 661515, 1062713115]);
 
oscar: E = elliptic_curve([1, 1, 1, 661515, 1062713115])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

magma: MordellWeilGroup(E);
 

Invariants

Conductor: NN  =  8670 8670  = 2351722 \cdot 3 \cdot 5 \cdot 17^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  506156852592978739200-506156852592978739200 = 121431152178-1 \cdot 2^{14} \cdot 3^{11} \cdot 5^{2} \cdot 17^{8}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  458935221239972559411200 \frac{4589352212399}{72559411200}  = 214311521723328132^{-14} \cdot 3^{-11} \cdot 5^{-2} \cdot 17 \cdot 23^{3} \cdot 281^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.65336922454592911010449340732.6533692245459291101044934073
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.764560328508451723271470328720.76456032850845172327147032872
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.03976773282766331.0397677328276633
Szpiro ratio: σm\sigma_{m} ≈ 6.07555059081147956.0755505908114795

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.122844142214899236117248198040.12284414221489923611724819804
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 28 28  = (27)121 ( 2 \cdot 7 )\cdot1\cdot2\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 3.43963598201717861128294954523.4396359820171786112829495452
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

3.439635982L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.1228441.00000028123.439635982\displaystyle 3.439635982 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.122844 \cdot 1.000000 \cdot 28}{1^2} \approx 3.439635982

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   8670.2.a.t

q+q2q3+q4+q5q6+3q7+q8+q9+q102q11q12+q13+3q14q15+q16+q185q19+O(q20) q + q^{2} - q^{3} + q^{4} + q^{5} - q^{6} + 3 q^{7} + q^{8} + q^{9} + q^{10} - 2 q^{11} - q^{12} + q^{13} + 3 q^{14} - q^{15} + q^{16} + q^{18} - 5 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 376992
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 1414 I14I_{14} split multiplicative -1 1 14 14
33 11 I11I_{11} nonsplit multiplicative 1 1 11 11
55 22 I2I_{2} split multiplicative -1 1 2 2
1717 11 IVIV^{*} additive -1 2 8 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell.

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[5, 2, 5, 3], [1, 1, 5, 0], [1, 2, 0, 1], [5, 2, 4, 3], [1, 0, 2, 1]]
 
GL(2,Integers(6)).subgroup(gens)
 
Gens := [[5, 2, 5, 3], [1, 1, 5, 0], [1, 2, 0, 1], [5, 2, 4, 3], [1, 0, 2, 1]];
 
sub<GL(2,Integers(6))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has label 6.2.0.a.1, level 6=23 6 = 2 \cdot 3 , index 22, genus 00, and generators

(5253),(1150),(1201),(5243),(1021)\left(\begin{array}{rr} 5 & 2 \\ 5 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 5 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 2 \\ 4 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[6])K:=\Q(E[6]) is a degree-144144 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/6Z)\GL_2(\Z/6\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 split multiplicative 44 867=3172 867 = 3 \cdot 17^{2}
33 nonsplit multiplicative 44 2890=25172 2890 = 2 \cdot 5 \cdot 17^{2}
55 split multiplicative 66 1734=23172 1734 = 2 \cdot 3 \cdot 17^{2}
77 good 22 4335=35172 4335 = 3 \cdot 5 \cdot 17^{2}
1111 good 22 2890=25172 2890 = 2 \cdot 5 \cdot 17^{2}
1717 additive 114114 30=235 30 = 2 \cdot 3 \cdot 5

Isogenies

gp: ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 8670t consists of this curve only.

Twists

The minimal quadratic twist of this elliptic curve is 8670w1, its twist by 1717.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.867.1 Z/2Z\Z/2\Z not in database
66 6.0.2255067.2 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 8.2.147954945870000.7 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type split nonsplit split ord ord ord add ord ss ord ord ord ord ord ss
λ\lambda-invariant(s) 2 0 1 2 0 2 - 0 0,0 0 0 0 0 0 0,0
μ\mu-invariant(s) 0 0 0 0 0 0 - 0 0,0 0 0 0 0 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.