Properties

Label 8800.n
Number of curves $4$
Conductor $8800$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("n1")
 
E.isogeny_class()
 

Elliptic curves in class 8800.n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8800.n1 8800a2 \([0, 0, 0, -14675, -684250]\) \(43688592648/55\) \(440000000\) \([2]\) \(6144\) \(0.93729\)  
8800.n2 8800a3 \([0, 0, 0, -2300, 28000]\) \(21024576/6875\) \(440000000000\) \([2]\) \(6144\) \(0.93729\)  
8800.n3 8800a1 \([0, 0, 0, -925, -10500]\) \(87528384/3025\) \(3025000000\) \([2, 2]\) \(3072\) \(0.59072\) \(\Gamma_0(N)\)-optimal
8800.n4 8800a4 \([0, 0, 0, 325, -36750]\) \(474552/73205\) \(-585640000000\) \([2]\) \(6144\) \(0.93729\)  

Rank

sage: E.rank()
 

The elliptic curves in class 8800.n have rank \(1\).

Complex multiplication

The elliptic curves in class 8800.n do not have complex multiplication.

Modular form 8800.2.a.n

sage: E.q_eigenform(10)
 
\(q - 3 q^{9} - q^{11} + 2 q^{13} + 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.