Properties

Label 8800.n
Number of curves 44
Conductor 88008800
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("n1")
 
E.isogeny_class()
 

Elliptic curves in class 8800.n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8800.n1 8800a2 [0,0,0,14675,684250][0, 0, 0, -14675, -684250] 43688592648/5543688592648/55 440000000440000000 [2][2] 61446144 0.937290.93729  
8800.n2 8800a3 [0,0,0,2300,28000][0, 0, 0, -2300, 28000] 21024576/687521024576/6875 440000000000440000000000 [2][2] 61446144 0.937290.93729  
8800.n3 8800a1 [0,0,0,925,10500][0, 0, 0, -925, -10500] 87528384/302587528384/3025 30250000003025000000 [2,2][2, 2] 30723072 0.590720.59072 Γ0(N)\Gamma_0(N)-optimal
8800.n4 8800a4 [0,0,0,325,36750][0, 0, 0, 325, -36750] 474552/73205474552/73205 585640000000-585640000000 [2][2] 61446144 0.937290.93729  

Rank

sage: E.rank()
 

The elliptic curves in class 8800.n have rank 11.

Complex multiplication

The elliptic curves in class 8800.n do not have complex multiplication.

Modular form 8800.2.a.n

sage: E.q_eigenform(10)
 
q3q9q11+2q13+2q17+4q19+O(q20)q - 3 q^{9} - q^{11} + 2 q^{13} + 2 q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1424412422124421)\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.