Show commands:
SageMath
E = EllipticCurve("n1")
E.isogeny_class()
Elliptic curves in class 8800.n
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
8800.n1 | 8800a2 | \([0, 0, 0, -14675, -684250]\) | \(43688592648/55\) | \(440000000\) | \([2]\) | \(6144\) | \(0.93729\) | |
8800.n2 | 8800a3 | \([0, 0, 0, -2300, 28000]\) | \(21024576/6875\) | \(440000000000\) | \([2]\) | \(6144\) | \(0.93729\) | |
8800.n3 | 8800a1 | \([0, 0, 0, -925, -10500]\) | \(87528384/3025\) | \(3025000000\) | \([2, 2]\) | \(3072\) | \(0.59072\) | \(\Gamma_0(N)\)-optimal |
8800.n4 | 8800a4 | \([0, 0, 0, 325, -36750]\) | \(474552/73205\) | \(-585640000000\) | \([2]\) | \(6144\) | \(0.93729\) |
Rank
sage: E.rank()
The elliptic curves in class 8800.n have rank \(1\).
Complex multiplication
The elliptic curves in class 8800.n do not have complex multiplication.Modular form 8800.2.a.n
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.