E = EllipticCurve("n1")
E.isogeny_class()
Elliptic curves in class 8800.n
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
8800.n1 |
8800a2 |
[0,0,0,−14675,−684250] |
43688592648/55 |
440000000 |
[2] |
6144 |
0.93729
|
|
8800.n2 |
8800a3 |
[0,0,0,−2300,28000] |
21024576/6875 |
440000000000 |
[2] |
6144 |
0.93729
|
|
8800.n3 |
8800a1 |
[0,0,0,−925,−10500] |
87528384/3025 |
3025000000 |
[2,2] |
3072 |
0.59072
|
Γ0(N)-optimal |
8800.n4 |
8800a4 |
[0,0,0,325,−36750] |
474552/73205 |
−585640000000 |
[2] |
6144 |
0.93729
|
|
The elliptic curves in class 8800.n have
rank 1.
The elliptic curves in class 8800.n do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1424412422124421⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.