Show commands:
SageMath
E = EllipticCurve("q1")
E.isogeny_class()
Elliptic curves in class 8800.q
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
8800.q1 | 8800o1 | \([0, 1, 0, -81408, -8968312]\) | \(-7458308028872/859375\) | \(-6875000000000\) | \([]\) | \(26880\) | \(1.4901\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curve 8800.q1 has rank \(0\).
Complex multiplication
The elliptic curves in class 8800.q do not have complex multiplication.Modular form 8800.2.a.q
sage: E.q_eigenform(10)