Properties

Label 8800.q
Number of curves $1$
Conductor $8800$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("q1")
 
E.isogeny_class()
 

Elliptic curves in class 8800.q

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8800.q1 8800o1 \([0, 1, 0, -81408, -8968312]\) \(-7458308028872/859375\) \(-6875000000000\) \([]\) \(26880\) \(1.4901\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 8800.q1 has rank \(0\).

Complex multiplication

The elliptic curves in class 8800.q do not have complex multiplication.

Modular form 8800.2.a.q

sage: E.q_eigenform(10)
 
\(q + q^{3} - 3 q^{7} - 2 q^{9} - q^{11} + 2 q^{13} - 7 q^{17} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display