Properties

Label 8800.q
Number of curves 11
Conductor 88008800
CM no
Rank 00

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("q1")
 
E.isogeny_class()
 

Elliptic curves in class 8800.q

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8800.q1 8800o1 [0,1,0,81408,8968312][0, 1, 0, -81408, -8968312] 7458308028872/859375-7458308028872/859375 6875000000000-6875000000000 [][] 2688026880 1.49011.4901 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curve 8800.q1 has rank 00.

Complex multiplication

The elliptic curves in class 8800.q do not have complex multiplication.

Modular form 8800.2.a.q

sage: E.q_eigenform(10)
 
q+q33q72q9q11+2q137q175q19+O(q20)q + q^{3} - 3 q^{7} - 2 q^{9} - q^{11} + 2 q^{13} - 7 q^{17} - 5 q^{19} + O(q^{20}) Copy content Toggle raw display