Show commands:
SageMath
E = EllipticCurve("c1")
E.isogeny_class()
Elliptic curves in class 880c
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
880.g3 | 880c1 | -optimal | ||||||
880.g2 | 880c2 | |||||||
880.g1 | 880c3 | |||||||
880.g4 | 880c4 |
Rank
sage: E.rank()
The elliptic curves in class 880c have rank .
Complex multiplication
The elliptic curves in class 880c do not have complex multiplication.Modular form 880.2.a.c
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The entry is the smallest degree of a cyclic isogeny between the -th and -th curve in the isogeny class, in the Cremona numbering.
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.