Properties

Label 880c
Number of curves 44
Conductor 880880
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 880c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
880.g3 880c1 [0,0,0,5042,137801][0, 0, 0, -5042, -137801] 885956203616256/15125885956203616256/15125 242000242000 [2][2] 576576 0.574960.57496 Γ0(N)\Gamma_0(N)-optimal
880.g2 880c2 [0,0,0,5047,137514][0, 0, 0, -5047, -137514] 55537159171536/22876562555537159171536/228765625 5856400000058564000000 [2,2][2, 2] 11521152 0.921530.92153  
880.g1 880c3 [0,0,0,7547,12986][0, 0, 0, -7547, 12986] 46424454082884/2679486012546424454082884/26794860125 2743793676800027437936768000 [4][4] 23042304 1.26811.2681  
880.g4 880c4 [0,0,0,2627,269646][0, 0, 0, -2627, -269646] 1957960715364/29541015625-1957960715364/29541015625 30250000000000-30250000000000 [4][4] 23042304 1.26811.2681  

Rank

sage: E.rank()
 

The elliptic curves in class 880c have rank 11.

Complex multiplication

The elliptic curves in class 880c do not have complex multiplication.

Modular form 880.2.a.c

sage: E.q_eigenform(10)
 
q+q54q73q9+q11+6q136q174q19+O(q20)q + q^{5} - 4 q^{7} - 3 q^{9} + q^{11} + 6 q^{13} - 6 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.