Properties

Label 882.c
Number of curves $2$
Conductor $882$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 882.c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
882.c1 882c2 \([1, -1, 0, -62190, 6208852]\) \(-6329617441/279936\) \(-1176442217564544\) \([]\) \(4704\) \(1.6567\)  
882.c2 882c1 \([1, -1, 0, -450, -8366]\) \(-2401/6\) \(-25215239574\) \([]\) \(672\) \(0.68378\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 882.c have rank \(0\).

Complex multiplication

The elliptic curves in class 882.c do not have complex multiplication.

Modular form 882.2.a.c

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{5} - q^{8} + q^{10} - 5 q^{11} + q^{16} + 4 q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.