Properties

Label 89280.em
Number of curves $4$
Conductor $89280$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("em1")
 
E.isogeny_class()
 

Elliptic curves in class 89280.em

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
89280.em1 89280by4 \([0, 0, 0, -239052, -44984464]\) \(15811147933922/1016955\) \(97171563479040\) \([2]\) \(393216\) \(1.7415\)  
89280.em2 89280by3 \([0, 0, 0, -80652, 8278256]\) \(607199886722/41558445\) \(3970971258716160\) \([2]\) \(393216\) \(1.7415\)  
89280.em3 89280by2 \([0, 0, 0, -15852, -612304]\) \(9220796644/1946025\) \(92972792217600\) \([2, 2]\) \(196608\) \(1.3949\)  
89280.em4 89280by1 \([0, 0, 0, 2148, -57904]\) \(91765424/174375\) \(-2082723840000\) \([2]\) \(98304\) \(1.0483\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 89280.em have rank \(1\).

Complex multiplication

The elliptic curves in class 89280.em do not have complex multiplication.

Modular form 89280.2.a.em

sage: E.q_eigenform(10)
 
\(q + q^{5} + 2 q^{13} - 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.