Properties

Label 89280bu
Number of curves $2$
Conductor $89280$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bu1")
 
E.isogeny_class()
 

Elliptic curves in class 89280bu

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
89280.f1 89280bu1 \([0, 0, 0, -3648, -84832]\) \(-449511424/155\) \(-1851310080\) \([]\) \(69120\) \(0.74934\) \(\Gamma_0(N)\)-optimal
89280.f2 89280bu2 \([0, 0, 0, 2112, -318688]\) \(87228416/3723875\) \(-44477724672000\) \([]\) \(207360\) \(1.2986\)  

Rank

sage: E.rank()
 

The elliptic curves in class 89280bu have rank \(1\).

Complex multiplication

The elliptic curves in class 89280bu do not have complex multiplication.

Modular form 89280.2.a.bu

sage: E.q_eigenform(10)
 
\(q - q^{5} - 4 q^{7} - 2 q^{13} + 3 q^{17} + 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.