sage:E = EllipticCurve("do1")
E.isogeny_class()
Elliptic curves in class 89280do
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
89280.fb1 |
89280do1 |
[0,0,0,−45612,−4402736] |
−1482713947827/325058560 |
−2300728081121280 |
[] |
387072 |
1.6684
|
Γ0(N)-optimal |
89280.fb2 |
89280do2 |
[0,0,0,323028,26448336] |
722458663317/476656000 |
−2459440263462912000 |
[] |
1161216 |
2.2177
|
|
sage:E.rank()
The elliptic curves in class 89280do have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1 |
5 | 1−T |
31 | 1+T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
7 |
1+2T+7T2 |
1.7.c
|
11 |
1+4T+11T2 |
1.11.e
|
13 |
1−4T+13T2 |
1.13.ae
|
17 |
1+17T2 |
1.17.a
|
19 |
1+19T2 |
1.19.a
|
23 |
1−4T+23T2 |
1.23.ae
|
29 |
1−2T+29T2 |
1.29.ac
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 89280do do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
(1331)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.