Properties

Label 89280do
Number of curves $2$
Conductor $89280$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("do1")
 
E.isogeny_class()
 

Elliptic curves in class 89280do

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
89280.fb1 89280do1 \([0, 0, 0, -45612, -4402736]\) \(-1482713947827/325058560\) \(-2300728081121280\) \([]\) \(387072\) \(1.6684\) \(\Gamma_0(N)\)-optimal
89280.fb2 89280do2 \([0, 0, 0, 323028, 26448336]\) \(722458663317/476656000\) \(-2459440263462912000\) \([]\) \(1161216\) \(2.2177\)  

Rank

sage: E.rank()
 

The elliptic curves in class 89280do have rank \(1\).

Complex multiplication

The elliptic curves in class 89280do do not have complex multiplication.

Modular form 89280.2.a.do

sage: E.q_eigenform(10)
 
\(q + q^{5} + q^{7} + 3 q^{11} + 4 q^{13} - 6 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.