Show commands:
SageMath
E = EllipticCurve("c1")
E.isogeny_class()
Elliptic curves in class 90.c
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
90.c1 | 90c8 | \([1, -1, 1, -48002, 4059929]\) | \(16778985534208729/81000\) | \(59049000\) | \([6]\) | \(192\) | \(1.1135\) | |
90.c2 | 90c7 | \([1, -1, 1, -4082, 14681]\) | \(10316097499609/5859375000\) | \(4271484375000\) | \([6]\) | \(192\) | \(1.1135\) | |
90.c3 | 90c6 | \([1, -1, 1, -3002, 63929]\) | \(4102915888729/9000000\) | \(6561000000\) | \([2, 6]\) | \(96\) | \(0.76690\) | |
90.c4 | 90c4 | \([1, -1, 1, -2597, -50281]\) | \(2656166199049/33750\) | \(24603750\) | \([2]\) | \(64\) | \(0.56417\) | |
90.c5 | 90c5 | \([1, -1, 1, -617, 5231]\) | \(35578826569/5314410\) | \(3874204890\) | \([2]\) | \(64\) | \(0.56417\) | |
90.c6 | 90c2 | \([1, -1, 1, -167, -709]\) | \(702595369/72900\) | \(53144100\) | \([2, 2]\) | \(32\) | \(0.21759\) | |
90.c7 | 90c3 | \([1, -1, 1, -122, 1721]\) | \(-273359449/1536000\) | \(-1119744000\) | \([12]\) | \(48\) | \(0.42032\) | |
90.c8 | 90c1 | \([1, -1, 1, 13, -61]\) | \(357911/2160\) | \(-1574640\) | \([4]\) | \(16\) | \(-0.12898\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 90.c have rank \(0\).
Complex multiplication
The elliptic curves in class 90.c do not have complex multiplication.Modular form 90.2.a.c
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrrrrrr} 1 & 4 & 2 & 12 & 3 & 6 & 4 & 12 \\ 4 & 1 & 2 & 3 & 12 & 6 & 4 & 12 \\ 2 & 2 & 1 & 6 & 6 & 3 & 2 & 6 \\ 12 & 3 & 6 & 1 & 4 & 2 & 12 & 4 \\ 3 & 12 & 6 & 4 & 1 & 2 & 12 & 4 \\ 6 & 6 & 3 & 2 & 2 & 1 & 6 & 2 \\ 4 & 4 & 2 & 12 & 12 & 6 & 1 & 3 \\ 12 & 12 & 6 & 4 & 4 & 2 & 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.