Properties

Label 90.c
Number of curves 88
Conductor 9090
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 90.c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
90.c1 90c8 [1,1,1,48002,4059929][1, -1, 1, -48002, 4059929] 16778985534208729/8100016778985534208729/81000 5904900059049000 [6][6] 192192 1.11351.1135  
90.c2 90c7 [1,1,1,4082,14681][1, -1, 1, -4082, 14681] 10316097499609/585937500010316097499609/5859375000 42714843750004271484375000 [6][6] 192192 1.11351.1135  
90.c3 90c6 [1,1,1,3002,63929][1, -1, 1, -3002, 63929] 4102915888729/90000004102915888729/9000000 65610000006561000000 [2,6][2, 6] 9696 0.766900.76690  
90.c4 90c4 [1,1,1,2597,50281][1, -1, 1, -2597, -50281] 2656166199049/337502656166199049/33750 2460375024603750 [2][2] 6464 0.564170.56417  
90.c5 90c5 [1,1,1,617,5231][1, -1, 1, -617, 5231] 35578826569/531441035578826569/5314410 38742048903874204890 [2][2] 6464 0.564170.56417  
90.c6 90c2 [1,1,1,167,709][1, -1, 1, -167, -709] 702595369/72900702595369/72900 5314410053144100 [2,2][2, 2] 3232 0.217590.21759  
90.c7 90c3 [1,1,1,122,1721][1, -1, 1, -122, 1721] 273359449/1536000-273359449/1536000 1119744000-1119744000 [12][12] 4848 0.420320.42032  
90.c8 90c1 [1,1,1,13,61][1, -1, 1, 13, -61] 357911/2160357911/2160 1574640-1574640 [4][4] 1616 0.12898-0.12898 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 90.c have rank 00.

Complex multiplication

The elliptic curves in class 90.c do not have complex multiplication.

Modular form 90.2.a.c

sage: E.q_eigenform(10)
 
q+q2+q4+q54q7+q8+q10+2q134q14+q166q174q19+O(q20)q + q^{2} + q^{4} + q^{5} - 4 q^{7} + q^{8} + q^{10} + 2 q^{13} - 4 q^{14} + q^{16} - 6 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1421236412412312641222166326123614212431264121246632216244212126131212644231)\left(\begin{array}{rrrrrrrr} 1 & 4 & 2 & 12 & 3 & 6 & 4 & 12 \\ 4 & 1 & 2 & 3 & 12 & 6 & 4 & 12 \\ 2 & 2 & 1 & 6 & 6 & 3 & 2 & 6 \\ 12 & 3 & 6 & 1 & 4 & 2 & 12 & 4 \\ 3 & 12 & 6 & 4 & 1 & 2 & 12 & 4 \\ 6 & 6 & 3 & 2 & 2 & 1 & 6 & 2 \\ 4 & 4 & 2 & 12 & 12 & 6 & 1 & 3 \\ 12 & 12 & 6 & 4 & 4 & 2 & 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.