Properties

Label 9025.f
Number of curves 22
Conductor 90259025
CM Q(19)\Q(\sqrt{-19})
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("f1")
 
E.isogeny_class()
 

Elliptic curves in class 9025.f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality CM discriminant
9025.f1 9025a2 [0,0,1,342950,77378094][0, 0, 1, -342950, -77378094] 884736-884736 5041995277796875-5041995277796875 [][] 5320053200 1.92681.9268   19-19
9025.f2 9025a1 [0,0,1,950,11281][0, 0, 1, -950, 11281] 884736-884736 107171875-107171875 [][] 28002800 0.454570.45457 Γ0(N)\Gamma_0(N)-optimal 19-19

Rank

sage: E.rank()
 

The elliptic curves in class 9025.f have rank 11.

Complex multiplication

Each elliptic curve in class 9025.f has complex multiplication by an order in the imaginary quadratic field Q(19)\Q(\sqrt{-19}) .

Modular form 9025.2.a.f

sage: E.q_eigenform(10)
 
q2q43q73q95q11+4q16+7q17+O(q20)q - 2 q^{4} - 3 q^{7} - 3 q^{9} - 5 q^{11} + 4 q^{16} + 7 q^{17} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(119191)\left(\begin{array}{rr} 1 & 19 \\ 19 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.