Properties

Label 90459r
Number of curves 44
Conductor 9045990459
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("r1")
 
E.isogeny_class()
 

Elliptic curves in class 90459r

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
90459.f3 90459r1 [1,1,1,7241,203128][1, -1, 1, -7241, -203128] 389017/57389017/57 61513352956176151335295617 [2][2] 147840147840 1.17891.1789 Γ0(N)\Gamma_0(N)-optimal
90459.f2 90459r2 [1,1,1,31046,1910756][1, -1, 1, -31046, 1910756] 30664297/324930664297/3249 350626111850169350626111850169 [2,2][2, 2] 295680295680 1.52551.5255  
90459.f4 90459r3 [1,1,1,40369,9366482][1, -1, 1, 40369, 9366482] 67419143/39096367419143/390963 42192008792637003-42192008792637003 [2][2] 591360591360 1.87201.8720  
90459.f1 90459r4 [1,1,1,483341,129457946][1, -1, 1, -483341, 129457946] 115714886617/1539115714886617/1539 166086052981659166086052981659 [2][2] 591360591360 1.87201.8720  

Rank

sage: E.rank()
 

The elliptic curves in class 90459r have rank 00.

Complex multiplication

The elliptic curves in class 90459r do not have complex multiplication.

Modular form 90459.2.a.r

sage: E.q_eigenform(10)
 
qq2q42q5+3q8+2q10+6q13q166q17+q19+O(q20)q - q^{2} - q^{4} - 2 q^{5} + 3 q^{8} + 2 q^{10} + 6 q^{13} - q^{16} - 6 q^{17} + q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.