Properties

Label 90459r
Number of curves $4$
Conductor $90459$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("r1")
 
E.isogeny_class()
 

Elliptic curves in class 90459r

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
90459.f3 90459r1 \([1, -1, 1, -7241, -203128]\) \(389017/57\) \(6151335295617\) \([2]\) \(147840\) \(1.1789\) \(\Gamma_0(N)\)-optimal
90459.f2 90459r2 \([1, -1, 1, -31046, 1910756]\) \(30664297/3249\) \(350626111850169\) \([2, 2]\) \(295680\) \(1.5255\)  
90459.f4 90459r3 \([1, -1, 1, 40369, 9366482]\) \(67419143/390963\) \(-42192008792637003\) \([2]\) \(591360\) \(1.8720\)  
90459.f1 90459r4 \([1, -1, 1, -483341, 129457946]\) \(115714886617/1539\) \(166086052981659\) \([2]\) \(591360\) \(1.8720\)  

Rank

sage: E.rank()
 

The elliptic curves in class 90459r have rank \(0\).

Complex multiplication

The elliptic curves in class 90459r do not have complex multiplication.

Modular form 90459.2.a.r

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{4} - 2 q^{5} + 3 q^{8} + 2 q^{10} + 6 q^{13} - q^{16} - 6 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.