E = EllipticCurve("r1")
E.isogeny_class()
Elliptic curves in class 90459r
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
90459.f3 |
90459r1 |
[1,−1,1,−7241,−203128] |
389017/57 |
6151335295617 |
[2] |
147840 |
1.1789
|
Γ0(N)-optimal |
90459.f2 |
90459r2 |
[1,−1,1,−31046,1910756] |
30664297/3249 |
350626111850169 |
[2,2] |
295680 |
1.5255
|
|
90459.f4 |
90459r3 |
[1,−1,1,40369,9366482] |
67419143/390963 |
−42192008792637003 |
[2] |
591360 |
1.8720
|
|
90459.f1 |
90459r4 |
[1,−1,1,−483341,129457946] |
115714886617/1539 |
166086052981659 |
[2] |
591360 |
1.8720
|
|
The elliptic curves in class 90459r have
rank 0.
The elliptic curves in class 90459r do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.