Properties

Label 912g1
Conductor 912912
Discriminant 233472233472
j-invariant 38901757 \frac{389017}{57}
CM no
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3x224x+48y^2=x^3-x^2-24x+48 Copy content Toggle raw display (homogenize, simplify)
y2z=x3x2z24xz2+48z3y^2z=x^3-x^2z-24xz^2+48z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x31971x+29106y^2=x^3-1971x+29106 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, -1, 0, -24, 48])
 
gp: E = ellinit([0, -1, 0, -24, 48])
 
magma: E := EllipticCurve([0, -1, 0, -24, 48]);
 
oscar: E = elliptic_curve([0, -1, 0, -24, 48])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(2,2)(2, 2)0.650473478357704811312979606080.65047347835770481131297960608\infty
(4,0)(4, 0)0022

Integral points

(4,±8)(-4,\pm 8), (2,±2)(2,\pm 2), (4,0) \left(4, 0\right) , (13,±42)(13,\pm 42) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  912 912  = 243192^{4} \cdot 3 \cdot 19
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  233472233472 = 2123192^{12} \cdot 3 \cdot 19
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  38901757 \frac{389017}{57}  = 311917333^{-1} \cdot 19^{-1} \cdot 73^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.24500866220282609366943236987-0.24500866220282609366943236987
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.93815584276277140308666449133-0.93815584276277140308666449133
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.96267257339347460.9626725733934746
Szpiro ratio: σm\sigma_{m} ≈ 3.1089001944090993.108900194409099

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 0.650473478357704811312979606080.65047347835770481131297960608
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 3.00809192207439209440487878933.0080919220743920944048787893
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 4 4  = 2211 2^{2}\cdot1\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 1.95668401577144375378096442311.9566840157714437537809644231
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

1.956684016L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor213.0080920.6504734221.956684016\displaystyle 1.956684016 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 3.008092 \cdot 0.650473 \cdot 4}{2^2} \approx 1.956684016

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   912.2.a.b

qq32q5+q9+6q13+2q156q17+q19+O(q20) q - q^{3} - 2 q^{5} + q^{9} + 6 q^{13} + 2 q^{15} - 6 q^{17} + q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 96
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 44 I4I_{4}^{*} additive -1 4 12 0
33 11 I1I_{1} nonsplit multiplicative 1 1 1 1
1919 11 I1I_{1} split multiplicative -1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 8.12.0.6

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[391, 396, 394, 169], [7, 6, 450, 451], [388, 1, 407, 6], [1, 0, 8, 1], [449, 8, 448, 9], [403, 402, 298, 67], [160, 3, 157, 2], [1, 8, 0, 1], [1, 4, 4, 17]]
 
GL(2,Integers(456)).subgroup(gens)
 
Gens := [[391, 396, 394, 169], [7, 6, 450, 451], [388, 1, 407, 6], [1, 0, 8, 1], [449, 8, 448, 9], [403, 402, 298, 67], [160, 3, 157, 2], [1, 8, 0, 1], [1, 4, 4, 17]];
 
sub<GL(2,Integers(456))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 456=23319 456 = 2^{3} \cdot 3 \cdot 19 , index 4848, genus 00, and generators

(391396394169),(76450451),(38814076),(1081),(44984489),(40340229867),(16031572),(1801),(14417)\left(\begin{array}{rr} 391 & 396 \\ 394 & 169 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 450 & 451 \end{array}\right),\left(\begin{array}{rr} 388 & 1 \\ 407 & 6 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 449 & 8 \\ 448 & 9 \end{array}\right),\left(\begin{array}{rr} 403 & 402 \\ 298 & 67 \end{array}\right),\left(\begin{array}{rr} 160 & 3 \\ 157 & 2 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[456])K:=\Q(E[456]) is a degree-189112320189112320 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/456Z)\GL_2(\Z/456\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 57=319 57 = 3 \cdot 19
33 nonsplit multiplicative 44 304=2419 304 = 2^{4} \cdot 19
1919 split multiplicative 2020 48=243 48 = 2^{4} \cdot 3

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2 and 4.
Its isogeny class 912g consists of 4 curves linked by isogenies of degrees dividing 4.

Twists

The minimal quadratic twist of this elliptic curve is 57b2, its twist by 4-4.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(57)\Q(\sqrt{57}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
22 Q(3)\Q(\sqrt{3}) Z/4Z\Z/4\Z 2.2.12.1-1083.1-b2
22 Q(19)\Q(\sqrt{19}) Z/4Z\Z/4\Z 2.2.76.1-171.1-f3
44 Q(3,19)\Q(\sqrt{3}, \sqrt{19}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 4.4.329232.1 Z/8Z\Z/8\Z not in database
88 8.0.548743155984.1 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.67371264.3 Z/8Z\Z/8\Z not in database
88 8.8.975543388416.1 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
88 8.2.5910009391872.5 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
1616 16.0.591512320479859900416.1 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/16Z\Z/16\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add nonsplit ord ss ss ord ord split ord ord ord ord ord ord ord
λ\lambda-invariant(s) - 1 3 1,5 1,1 3 1 2 1 1 1 1 1 1 1
μ\mu-invariant(s) - 0 0 0,0 0,0 0 0 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.