Properties

Label 9200bg
Number of curves $2$
Conductor $9200$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bg1")
 
E.isogeny_class()
 

Elliptic curves in class 9200bg

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
9200.bf2 9200bg1 \([0, -1, 0, -15208, 588912]\) \(243135625/48668\) \(77868800000000\) \([]\) \(17280\) \(1.3816\) \(\Gamma_0(N)\)-optimal
9200.bf1 9200bg2 \([0, -1, 0, -1165208, 484508912]\) \(109348914285625/1472\) \(2355200000000\) \([]\) \(51840\) \(1.9309\)  

Rank

sage: E.rank()
 

The elliptic curves in class 9200bg have rank \(1\).

Complex multiplication

The elliptic curves in class 9200bg do not have complex multiplication.

Modular form 9200.2.a.bg

sage: E.q_eigenform(10)
 
\(q + 2 q^{3} + q^{7} + q^{9} - 3 q^{11} - q^{13} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.