Properties

Label 9200bg
Number of curves 22
Conductor 92009200
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bg1")
 
E.isogeny_class()
 

Elliptic curves in class 9200bg

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
9200.bf2 9200bg1 [0,1,0,15208,588912][0, -1, 0, -15208, 588912] 243135625/48668243135625/48668 7786880000000077868800000000 [][] 1728017280 1.38161.3816 Γ0(N)\Gamma_0(N)-optimal
9200.bf1 9200bg2 [0,1,0,1165208,484508912][0, -1, 0, -1165208, 484508912] 109348914285625/1472109348914285625/1472 23552000000002355200000000 [][] 5184051840 1.93091.9309  

Rank

sage: E.rank()
 

The elliptic curves in class 9200bg have rank 11.

Complex multiplication

The elliptic curves in class 9200bg do not have complex multiplication.

Modular form 9200.2.a.bg

sage: E.q_eigenform(10)
 
q+2q3+q7+q93q11q13+q19+O(q20)q + 2 q^{3} + q^{7} + q^{9} - 3 q^{11} - q^{13} + q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1331)\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.