Show commands:
SageMath
E = EllipticCurve("v1")
E.isogeny_class()
Elliptic curves in class 9200v
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
9200.h2 | 9200v1 | \([0, 1, 0, -2708, -53912]\) | \(878800/23\) | \(57500000000\) | \([]\) | \(10080\) | \(0.84612\) | \(\Gamma_0(N)\)-optimal |
9200.h1 | 9200v2 | \([0, 1, 0, -27708, 1746088]\) | \(941054800/12167\) | \(30417500000000\) | \([]\) | \(30240\) | \(1.3954\) |
Rank
sage: E.rank()
The elliptic curves in class 9200v have rank \(0\).
Complex multiplication
The elliptic curves in class 9200v do not have complex multiplication.Modular form 9200.2.a.v
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.