Properties

Label 9248.b
Number of curves 22
Conductor 92489248
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("b1")
 
E.isogeny_class()
 

Elliptic curves in class 9248.b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
9248.b1 9248c1 [0,1,0,6454,197280][0, 1, 0, -6454, 197280] 19248832/1719248832/17 2626167507226261675072 [2][2] 92169216 0.924590.92459 Γ0(N)\Gamma_0(N)-optimal
9248.b2 9248c2 [0,1,0,5009,289471][0, 1, 0, -5009, 289471] 140608/289-140608/289 28572702478336-28572702478336 [2][2] 1843218432 1.27121.2712  

Rank

sage: E.rank()
 

The elliptic curves in class 9248.b have rank 11.

Complex multiplication

The elliptic curves in class 9248.b do not have complex multiplication.

Modular form 9248.2.a.b

sage: E.q_eigenform(10)
 
q2q32q52q7+q9+2q11+2q13+4q154q19+O(q20)q - 2 q^{3} - 2 q^{5} - 2 q^{7} + q^{9} + 2 q^{11} + 2 q^{13} + 4 q^{15} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.