Show commands:
SageMath
E = EllipticCurve("f1")
E.isogeny_class()
Elliptic curves in class 9248.f
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality | CM discriminant |
---|---|---|---|---|---|---|---|---|---|
9248.f1 | 9248e2 | \([0, 0, 0, -3179, -68782]\) | \(287496\) | \(12358435328\) | \([2]\) | \(5120\) | \(0.79922\) | \(-16\) | |
9248.f2 | 9248e3 | \([0, 0, 0, -3179, 68782]\) | \(287496\) | \(12358435328\) | \([2]\) | \(5120\) | \(0.79922\) | \(-16\) | |
9248.f3 | 9248e1 | \([0, 0, 0, -289, 0]\) | \(1728\) | \(1544804416\) | \([2, 2]\) | \(2560\) | \(0.45265\) | \(\Gamma_0(N)\)-optimal | \(-4\) |
9248.f4 | 9248e4 | \([0, 0, 0, 1156, 0]\) | \(1728\) | \(-98867482624\) | \([2]\) | \(5120\) | \(0.79922\) | \(-4\) |
Rank
sage: E.rank()
The elliptic curves in class 9248.f have rank \(0\).
Complex multiplication
Each elliptic curve in class 9248.f has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-1}) \).Modular form 9248.2.a.f
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.