sage:E = EllipticCurve("f1")
E.isogeny_class()
Elliptic curves in class 9248.f
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
CM discriminant |
9248.f1 |
9248e2 |
[0,0,0,−3179,−68782] |
287496 |
12358435328 |
[2] |
5120 |
0.79922
|
|
−16 |
9248.f2 |
9248e3 |
[0,0,0,−3179,68782] |
287496 |
12358435328 |
[2] |
5120 |
0.79922
|
|
−16 |
9248.f3 |
9248e1 |
[0,0,0,−289,0] |
1728 |
1544804416 |
[2,2] |
2560 |
0.45265
|
Γ0(N)-optimal |
−4 |
9248.f4 |
9248e4 |
[0,0,0,1156,0] |
1728 |
−98867482624 |
[2] |
5120 |
0.79922
|
|
−4 |
sage:E.rank()
The elliptic curves in class 9248.f have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
17 | 1 |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
3 |
1+3T2 |
1.3.a
|
5 |
1−2T+5T2 |
1.5.ac
|
7 |
1+7T2 |
1.7.a
|
11 |
1+11T2 |
1.11.a
|
13 |
1−6T+13T2 |
1.13.ag
|
19 |
1+19T2 |
1.19.a
|
23 |
1+23T2 |
1.23.a
|
29 |
1−10T+29T2 |
1.29.ak
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
Each elliptic curve in class 9248.f has complex multiplication by an order in the imaginary quadratic field
Q(−1).
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1424412422124421⎠⎟⎟⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.