Properties

Label 9248.f
Number of curves $4$
Conductor $9248$
CM \(\Q(\sqrt{-1}) \)
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("f1")
 
E.isogeny_class()
 

Elliptic curves in class 9248.f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality CM discriminant
9248.f1 9248e2 \([0, 0, 0, -3179, -68782]\) \(287496\) \(12358435328\) \([2]\) \(5120\) \(0.79922\)   \(-16\)
9248.f2 9248e3 \([0, 0, 0, -3179, 68782]\) \(287496\) \(12358435328\) \([2]\) \(5120\) \(0.79922\)   \(-16\)
9248.f3 9248e1 \([0, 0, 0, -289, 0]\) \(1728\) \(1544804416\) \([2, 2]\) \(2560\) \(0.45265\) \(\Gamma_0(N)\)-optimal \(-4\)
9248.f4 9248e4 \([0, 0, 0, 1156, 0]\) \(1728\) \(-98867482624\) \([2]\) \(5120\) \(0.79922\)   \(-4\)

Rank

sage: E.rank()
 

The elliptic curves in class 9248.f have rank \(0\).

Complex multiplication

Each elliptic curve in class 9248.f has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-1}) \).

Modular form 9248.2.a.f

sage: E.q_eigenform(10)
 
\(q + 2 q^{5} - 3 q^{9} + 6 q^{13} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.