Properties

Label 9282.c
Number of curves $4$
Conductor $9282$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 9282.c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
9282.c1 9282d3 \([1, 1, 0, -1593566, -774953556]\) \(447542520502832545966057/58109366952\) \(58109366952\) \([2]\) \(110592\) \(1.9241\)  
9282.c2 9282d2 \([1, 1, 0, -99606, -12137580]\) \(109291660572926209897/39371006735424\) \(39371006735424\) \([2, 2]\) \(55296\) \(1.5775\)  
9282.c3 9282d4 \([1, 1, 0, -85326, -15721860]\) \(-68703019601012586217/66539331109805736\) \(-66539331109805736\) \([2]\) \(110592\) \(1.9241\)  
9282.c4 9282d1 \([1, 1, 0, -7126, -133676]\) \(40027308583943017/15783560712192\) \(15783560712192\) \([2]\) \(27648\) \(1.2310\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 9282.c have rank \(1\).

Complex multiplication

The elliptic curves in class 9282.c do not have complex multiplication.

Modular form 9282.2.a.c

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} - 2 q^{5} + q^{6} + q^{7} - q^{8} + q^{9} + 2 q^{10} + 4 q^{11} - q^{12} - q^{13} - q^{14} + 2 q^{15} + q^{16} + q^{17} - q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.