Show commands:
SageMath
E = EllipticCurve("c1")
E.isogeny_class()
Elliptic curves in class 9282.c
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
9282.c1 | 9282d3 | \([1, 1, 0, -1593566, -774953556]\) | \(447542520502832545966057/58109366952\) | \(58109366952\) | \([2]\) | \(110592\) | \(1.9241\) | |
9282.c2 | 9282d2 | \([1, 1, 0, -99606, -12137580]\) | \(109291660572926209897/39371006735424\) | \(39371006735424\) | \([2, 2]\) | \(55296\) | \(1.5775\) | |
9282.c3 | 9282d4 | \([1, 1, 0, -85326, -15721860]\) | \(-68703019601012586217/66539331109805736\) | \(-66539331109805736\) | \([2]\) | \(110592\) | \(1.9241\) | |
9282.c4 | 9282d1 | \([1, 1, 0, -7126, -133676]\) | \(40027308583943017/15783560712192\) | \(15783560712192\) | \([2]\) | \(27648\) | \(1.2310\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 9282.c have rank \(1\).
Complex multiplication
The elliptic curves in class 9282.c do not have complex multiplication.Modular form 9282.2.a.c
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.