Properties

Label 9282.j
Number of curves $4$
Conductor $9282$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("j1")
 
E.isogeny_class()
 

Elliptic curves in class 9282.j

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
9282.j1 9282m3 \([1, 0, 1, -16502, -817270]\) \(496930471478093017/250614\) \(250614\) \([2]\) \(10752\) \(0.80496\)  
9282.j2 9282m4 \([1, 0, 1, -1242, -7286]\) \(211634149400857/100188617802\) \(100188617802\) \([2]\) \(10752\) \(0.80496\)  
9282.j3 9282m2 \([1, 0, 1, -1032, -12830]\) \(121382959848697/86155524\) \(86155524\) \([2, 2]\) \(5376\) \(0.45838\)  
9282.j4 9282m1 \([1, 0, 1, -52, -286]\) \(-15124197817/25469808\) \(-25469808\) \([2]\) \(2688\) \(0.11181\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 9282.j have rank \(0\).

Complex multiplication

The elliptic curves in class 9282.j do not have complex multiplication.

Modular form 9282.2.a.j

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - 2 q^{5} - q^{6} + q^{7} - q^{8} + q^{9} + 2 q^{10} + 4 q^{11} + q^{12} + q^{13} - q^{14} - 2 q^{15} + q^{16} - q^{17} - q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.