Properties

Label 9360bq
Number of curves 11
Conductor 93609360
CM no
Rank 00

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bq1") E.isogeny_class()
 

Elliptic curves in class 9360bq

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
9360.e1 9360bq1 [0,0,0,1752,5289572][0, 0, 0, 1752, -5289572] 3186827264/647693718753186827264/64769371875 12087519256800000-12087519256800000 [][] 4992049920 1.76481.7648 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curve 9360bq1 has rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
3311
551T1 - T
13131T1 - T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
77 1+7T2 1 + 7 T^{2} 1.7.a
1111 14T+11T2 1 - 4 T + 11 T^{2} 1.11.ae
1717 12T+17T2 1 - 2 T + 17 T^{2} 1.17.ac
1919 14T+19T2 1 - 4 T + 19 T^{2} 1.19.ae
2323 14T+23T2 1 - 4 T + 23 T^{2} 1.23.ae
2929 16T+29T2 1 - 6 T + 29 T^{2} 1.29.ag
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 9360bq do not have complex multiplication.

Modular form 9360.2.a.bq

Copy content sage:E.q_eigenform(10)
 
qq53q7+q11+q13+3q17+2q19+O(q20)q - q^{5} - 3 q^{7} + q^{11} + q^{13} + 3 q^{17} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display