sage:E = EllipticCurve("bq1")
E.isogeny_class()
Elliptic curves in class 9360bq
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
9360.e1 |
9360bq1 |
[0,0,0,1752,−5289572] |
3186827264/64769371875 |
−12087519256800000 |
[] |
49920 |
1.7648
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curve 9360bq1 has
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1 |
5 | 1−T |
13 | 1−T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
7 |
1+7T2 |
1.7.a
|
11 |
1−4T+11T2 |
1.11.ae
|
17 |
1−2T+17T2 |
1.17.ac
|
19 |
1−4T+19T2 |
1.19.ae
|
23 |
1−4T+23T2 |
1.23.ae
|
29 |
1−6T+29T2 |
1.29.ag
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 9360bq do not have complex multiplication.
sage:E.q_eigenform(10)