Show commands:
SageMath
E = EllipticCurve("bq1")
E.isogeny_class()
Elliptic curves in class 9360bq
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
9360.e1 | 9360bq1 | \([0, 0, 0, 1752, -5289572]\) | \(3186827264/64769371875\) | \(-12087519256800000\) | \([]\) | \(49920\) | \(1.7648\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curve 9360bq1 has rank \(0\).
Complex multiplication
The elliptic curves in class 9360bq do not have complex multiplication.Modular form 9360.2.a.bq
sage: E.q_eigenform(10)