Show commands:
SageMath
E = EllipticCurve("bz1")
E.isogeny_class()
Elliptic curves in class 9408.bz
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
9408.bz1 | 9408bi2 | \([0, 1, 0, -3649, 83705]\) | \(-1713910976512/1594323\) | \(-4999796928\) | \([]\) | \(6240\) | \(0.78396\) | |
9408.bz2 | 9408bi1 | \([0, 1, 0, -9, -15]\) | \(-28672/3\) | \(-9408\) | \([]\) | \(480\) | \(-0.49851\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 9408.bz have rank \(1\).
Complex multiplication
The elliptic curves in class 9408.bz do not have complex multiplication.Modular form 9408.2.a.bz
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 13 \\ 13 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.