Properties

Label 9408.bz
Number of curves $2$
Conductor $9408$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bz1")
 
E.isogeny_class()
 

Elliptic curves in class 9408.bz

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
9408.bz1 9408bi2 \([0, 1, 0, -3649, 83705]\) \(-1713910976512/1594323\) \(-4999796928\) \([]\) \(6240\) \(0.78396\)  
9408.bz2 9408bi1 \([0, 1, 0, -9, -15]\) \(-28672/3\) \(-9408\) \([]\) \(480\) \(-0.49851\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 9408.bz have rank \(1\).

Complex multiplication

The elliptic curves in class 9408.bz do not have complex multiplication.

Modular form 9408.2.a.bz

sage: E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{5} + q^{9} + 2 q^{11} + q^{13} - 2 q^{15} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 13 \\ 13 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.