sage:E = EllipticCurve("co1")
E.isogeny_class()
Elliptic curves in class 9408.co
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
9408.co1 |
9408bb4 |
[0,1,0,−358353,82449135] |
2640279346000/3087 |
5950381473792 |
[2] |
55296 |
1.7343
|
|
9408.co2 |
9408bb3 |
[0,1,0,−22213,1304939] |
−10061824000/352947 |
−42520434281472 |
[2] |
27648 |
1.3878
|
|
9408.co3 |
9408bb2 |
[0,1,0,−5553,49167] |
9826000/5103 |
9836344885248 |
[2] |
18432 |
1.1850
|
|
9408.co4 |
9408bb1 |
[0,1,0,1307,6635] |
2048000/1323 |
−159385218048 |
[2] |
9216 |
0.83846
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curves in class 9408.co have
rank 1.
The elliptic curves in class 9408.co do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1236216336126321⎠⎟⎟⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.