Properties

Label 9408.df
Number of curves $2$
Conductor $9408$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("df1")
 
E.isogeny_class()
 

Elliptic curves in class 9408.df

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
9408.df1 9408dd2 \([0, 1, 0, -7121, -233073]\) \(20720464/63\) \(121436356608\) \([2]\) \(18432\) \(0.99554\)  
9408.df2 9408dd1 \([0, 1, 0, -261, -6693]\) \(-16384/147\) \(-17709468672\) \([2]\) \(9216\) \(0.64897\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 9408.df have rank \(0\).

Complex multiplication

The elliptic curves in class 9408.df do not have complex multiplication.

Modular form 9408.2.a.df

sage: E.q_eigenform(10)
 
\(q + q^{3} + 4 q^{5} + q^{9} + 2 q^{11} - 6 q^{13} + 4 q^{15} + 4 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.