Properties

Label 9408bi1
Conductor 94089408
Discriminant 9408-9408
j-invariant 286723 -\frac{28672}{3}
CM no
Rank 11
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3+x29x15y^2=x^3+x^2-9x-15 Copy content Toggle raw display (homogenize, simplify)
y2z=x3+x2z9xz215z3y^2z=x^3+x^2z-9xz^2-15z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3756x8694y^2=x^3-756x-8694 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 1, 0, -9, -15])
 
gp: E = ellinit([0, 1, 0, -9, -15])
 
magma: E := EllipticCurve([0, 1, 0, -9, -15]);
 
oscar: E = elliptic_curve([0, 1, 0, -9, -15])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(32,183)(32, 183)3.52998842286076096298260877293.5299884228607609629826087729\infty

Integral points

(32,±183)(32,\pm 183) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  9408 9408  = 263722^{6} \cdot 3 \cdot 7^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  9408-9408 = 126372-1 \cdot 2^{6} \cdot 3 \cdot 7^{2}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  286723 -\frac{28672}{3}  = 1212317-1 \cdot 2^{12} \cdot 3^{-1} \cdot 7
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.49851392613907964731636909121-0.49851392613907964731636909121
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 1.1694058745949378528758772758-1.1694058745949378528758772758
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.91238745112450650.9123874511245065
Szpiro ratio: σm\sigma_{m} ≈ 2.0198860289633772.019886028963377

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 3.52998842286076096298260877293.5299884228607609629826087729
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 1.35768302357893604289243460421.3576830235789360428924346042
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 1 1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 4.79260535514823778128973446544.7926053551482377812897344654
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

4.792605355L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor211.3576833.5299881124.792605355\displaystyle 4.792605355 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 1.357683 \cdot 3.529988 \cdot 1}{1^2} \approx 4.792605355

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   9408.2.a.bz

q+q32q5+q9+2q11+q132q15+q19+O(q20) q + q^{3} - 2 q^{5} + q^{9} + 2 q^{11} + q^{13} - 2 q^{15} + q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 480
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 IIII additive 1 6 6 0
33 11 I1I_{1} split multiplicative -1 1 1 1
77 11 IIII additive -1 2 2 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
1313 13B.4.1 13.28.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[335, 26, 78, 251], [2183, 2158, 0, 1805], [1637, 0, 0, 2183], [2159, 26, 2158, 27], [1091, 0, 0, 2183], [1663, 2158, 1664, 2157], [1819, 2158, 1807, 1845], [1, 26, 0, 1], [14, 23, 871, 1431], [14, 23, 325, 339], [1, 0, 26, 1]]
 
GL(2,Integers(2184)).subgroup(gens)
 
Gens := [[335, 26, 78, 251], [2183, 2158, 0, 1805], [1637, 0, 0, 2183], [2159, 26, 2158, 27], [1091, 0, 0, 2183], [1663, 2158, 1664, 2157], [1819, 2158, 1807, 1845], [1, 26, 0, 1], [14, 23, 871, 1431], [14, 23, 325, 339], [1, 0, 26, 1]];
 
sub<GL(2,Integers(2184))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 2184=233713 2184 = 2^{3} \cdot 3 \cdot 7 \cdot 13 , index 336336, genus 99, and generators

(3352678251),(2183215801805),(1637002183),(215926215827),(1091002183),(1663215816642157),(1819215818071845),(12601),(14238711431),(1423325339),(10261)\left(\begin{array}{rr} 335 & 26 \\ 78 & 251 \end{array}\right),\left(\begin{array}{rr} 2183 & 2158 \\ 0 & 1805 \end{array}\right),\left(\begin{array}{rr} 1637 & 0 \\ 0 & 2183 \end{array}\right),\left(\begin{array}{rr} 2159 & 26 \\ 2158 & 27 \end{array}\right),\left(\begin{array}{rr} 1091 & 0 \\ 0 & 2183 \end{array}\right),\left(\begin{array}{rr} 1663 & 2158 \\ 1664 & 2157 \end{array}\right),\left(\begin{array}{rr} 1819 & 2158 \\ 1807 & 1845 \end{array}\right),\left(\begin{array}{rr} 1 & 26 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 14 & 23 \\ 871 & 1431 \end{array}\right),\left(\begin{array}{rr} 14 & 23 \\ 325 & 339 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 26 & 1 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[2184])K:=\Q(E[2184]) is a degree-1159358054411593580544 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/2184Z)\GL_2(\Z/2184\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 147=372 147 = 3 \cdot 7^{2}
33 split multiplicative 44 3136=2672 3136 = 2^{6} \cdot 7^{2}
77 additive 1414 192=263 192 = 2^{6} \cdot 3

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 13.
Its isogeny class 9408bi consists of 2 curves linked by isogenies of degree 13.

Twists

The minimal quadratic twist of this elliptic curve is 147c1, its twist by 88.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.588.1 Z/2Z\Z/2\Z not in database
66 6.0.1037232.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
66 6.0.8605184.1 Z/13Z\Z/13\Z not in database
88 8.2.85365421682688.15 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database
1818 18.0.29729526031750296055578624.1 Z/26Z\Z/26\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add split ord add ord ord ss ord ss ord ord ord ord ord ord
λ\lambda-invariant(s) - 2 1 - 1 3 1,1 1 1,1 1 1 1 3 1 1
μ\mu-invariant(s) - 0 0 - 0 0 0,0 0 0,0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.