Properties

Label 960.d
Number of curves 44
Conductor 960960
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("d1")
 
E.isogeny_class()
 

Elliptic curves in class 960.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
960.d1 960j3 [0,1,0,1921,31775][0, -1, 0, -1921, -31775] 23937672968/4523937672968/45 14745601474560 [2][2] 512512 0.438890.43889  
960.d2 960j4 [0,1,0,321,1665][0, -1, 0, -321, 1665] 111980168/32805111980168/32805 10749542401074954240 [2][2] 512512 0.438890.43889  
960.d3 960j2 [0,1,0,121,455][0, -1, 0, -121, -455] 48228544/202548228544/2025 82944008294400 [2,2][2, 2] 256256 0.0923190.092319  
960.d4 960j1 [0,1,0,4,30][0, -1, 0, 4, -30] 85184/562585184/5625 360000-360000 [2][2] 128128 0.25425-0.25425 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 960.d have rank 00.

Complex multiplication

The elliptic curves in class 960.d do not have complex multiplication.

Modular form 960.2.a.d

sage: E.q_eigenform(10)
 
qq3q5+4q7+q9+2q13+q156q17+O(q20)q - q^{3} - q^{5} + 4 q^{7} + q^{9} + 2 q^{13} + q^{15} - 6 q^{17} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1424412422124421)\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.