Properties

Label 960.d
Number of curves $4$
Conductor $960$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("d1")
 
E.isogeny_class()
 

Elliptic curves in class 960.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
960.d1 960j3 \([0, -1, 0, -1921, -31775]\) \(23937672968/45\) \(1474560\) \([2]\) \(512\) \(0.43889\)  
960.d2 960j4 \([0, -1, 0, -321, 1665]\) \(111980168/32805\) \(1074954240\) \([2]\) \(512\) \(0.43889\)  
960.d3 960j2 \([0, -1, 0, -121, -455]\) \(48228544/2025\) \(8294400\) \([2, 2]\) \(256\) \(0.092319\)  
960.d4 960j1 \([0, -1, 0, 4, -30]\) \(85184/5625\) \(-360000\) \([2]\) \(128\) \(-0.25425\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 960.d have rank \(0\).

Complex multiplication

The elliptic curves in class 960.d do not have complex multiplication.

Modular form 960.2.a.d

sage: E.q_eigenform(10)
 
\(q - q^{3} - q^{5} + 4 q^{7} + q^{9} + 2 q^{13} + q^{15} - 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.