Properties

Label 960.m
Number of curves 44
Conductor 960960
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("m1")
 
E.isogeny_class()
 

Elliptic curves in class 960.m

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
960.m1 960h3 [0,1,0,1985,19617][0, 1, 0, -1985, -19617] 26410345352/1054687526410345352/10546875 345600000000345600000000 [2][2] 15361536 0.912210.91221  
960.m2 960h2 [0,1,0,905,9975][0, 1, 0, -905, 9975] 20034997696/45562520034997696/455625 18662400001866240000 [2,2][2, 2] 768768 0.565640.56564  
960.m3 960h1 [0,1,0,900,10098][0, 1, 0, -900, 10098] 1261112198464/6751261112198464/675 4320043200 [2][2] 384384 0.219070.21907 Γ0(N)\Gamma_0(N)-optimal
960.m4 960h4 [0,1,0,95,31775][0, 1, 0, 95, 31775] 2863288/132860252863288/13286025 435356467200-435356467200 [4][4] 15361536 0.912210.91221  

Rank

sage: E.rank()
 

The elliptic curves in class 960.m have rank 11.

Complex multiplication

The elliptic curves in class 960.m do not have complex multiplication.

Modular form 960.2.a.m

sage: E.q_eigenform(10)
 
q+q3+q54q7+q94q116q13+q15+2q174q19+O(q20)q + q^{3} + q^{5} - 4 q^{7} + q^{9} - 4 q^{11} - 6 q^{13} + q^{15} + 2 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.