sage:E = EllipticCurve("m1")
E.isogeny_class()
Elliptic curves in class 960.m
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
960.m1 |
960h3 |
[0,1,0,−1985,−19617] |
26410345352/10546875 |
345600000000 |
[2] |
1536 |
0.91221
|
|
960.m2 |
960h2 |
[0,1,0,−905,9975] |
20034997696/455625 |
1866240000 |
[2,2] |
768 |
0.56564
|
|
960.m3 |
960h1 |
[0,1,0,−900,10098] |
1261112198464/675 |
43200 |
[2] |
384 |
0.21907
|
Γ0(N)-optimal |
960.m4 |
960h4 |
[0,1,0,95,31775] |
2863288/13286025 |
−435356467200 |
[4] |
1536 |
0.91221
|
|
sage:E.rank()
The elliptic curves in class 960.m have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1−T |
5 | 1−T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
7 |
1+4T+7T2 |
1.7.e
|
11 |
1+4T+11T2 |
1.11.e
|
13 |
1+6T+13T2 |
1.13.g
|
17 |
1−2T+17T2 |
1.17.ac
|
19 |
1+4T+19T2 |
1.19.e
|
23 |
1+23T2 |
1.23.a
|
29 |
1+10T+29T2 |
1.29.k
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 960.m do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.