Show commands:
SageMath
E = EllipticCurve("m1")
E.isogeny_class()
Elliptic curves in class 960.m
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
960.m1 | 960h3 | \([0, 1, 0, -1985, -19617]\) | \(26410345352/10546875\) | \(345600000000\) | \([2]\) | \(1536\) | \(0.91221\) | |
960.m2 | 960h2 | \([0, 1, 0, -905, 9975]\) | \(20034997696/455625\) | \(1866240000\) | \([2, 2]\) | \(768\) | \(0.56564\) | |
960.m3 | 960h1 | \([0, 1, 0, -900, 10098]\) | \(1261112198464/675\) | \(43200\) | \([2]\) | \(384\) | \(0.21907\) | \(\Gamma_0(N)\)-optimal |
960.m4 | 960h4 | \([0, 1, 0, 95, 31775]\) | \(2863288/13286025\) | \(-435356467200\) | \([4]\) | \(1536\) | \(0.91221\) |
Rank
sage: E.rank()
The elliptic curves in class 960.m have rank \(1\).
Complex multiplication
The elliptic curves in class 960.m do not have complex multiplication.Modular form 960.2.a.m
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.