Show commands:
SageMath
E = EllipticCurve("cd1")
E.isogeny_class()
Elliptic curves in class 9600.cd
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
9600.cd1 | 9600v2 | \([0, 1, 0, -633, -4137]\) | \(219488/75\) | \(9600000000\) | \([2]\) | \(9216\) | \(0.61744\) | |
9600.cd2 | 9600v1 | \([0, 1, 0, 117, -387]\) | \(43904/45\) | \(-180000000\) | \([2]\) | \(4608\) | \(0.27086\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 9600.cd have rank \(0\).
Complex multiplication
The elliptic curves in class 9600.cd do not have complex multiplication.Modular form 9600.2.a.cd
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.