Properties

Label 960e5
Conductor 960960
Discriminant 88473600008847360000
j-invariant 265616619904933750 \frac{2656166199049}{33750}
CM no
Rank 00
Torsion structure Z/4Z\Z/{4}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3x218465x+971937y^2=x^3-x^2-18465x+971937 Copy content Toggle raw display (homogenize, simplify)
y2z=x3x2z18465xz2+971937z3y^2z=x^3-x^2z-18465xz^2+971937z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x31495692x+704055024y^2=x^3-1495692x+704055024 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, -1, 0, -18465, 971937])
 
gp: E = ellinit([0, -1, 0, -18465, 971937])
 
magma: E := EllipticCurve([0, -1, 0, -18465, 971937]);
 
oscar: E = elliptic_curve([0, -1, 0, -18465, 971937])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z/4Z\Z/{4}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(89,160)(89, 160)0044

Integral points

(79,0) \left(79, 0\right) , (89,±160)(89,\pm 160) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  960 960  = 26352^{6} \cdot 3 \cdot 5
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  88473600008847360000 = 21933542^{19} \cdot 3^{3} \cdot 5^{4}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  265616619904933750 \frac{2656166199049}{33750}  = 213354113125932^{-1} \cdot 3^{-3} \cdot 5^{-4} \cdot 11^{3} \cdot 1259^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.05458061172221479871746788531.0545806117222147987174678853
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.0148598408822968345916197031130.014859840882296834591619703113
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.05017408953159541.0501740895315954
Szpiro ratio: σm\sigma_{m} ≈ 5.982955195381185.98295519538118

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 1.18509267214805285283674333221.1850926721480528528367433322
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 16 16  = 22122 2^{2}\cdot1\cdot2^{2}
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 44
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 1.18509267214805285283674333221.1850926721480528528367433322
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

1.185092672L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor211.1850931.00000016421.185092672\displaystyle 1.185092672 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 1.185093 \cdot 1.000000 \cdot 16}{4^2} \approx 1.185092672

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   960.2.a.e

qq3+q54q7+q92q13q15+6q17+4q19+O(q20) q - q^{3} + q^{5} - 4 q^{7} + q^{9} - 2 q^{13} - q^{15} + 6 q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 1536
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 44 I9I_{9}^{*} additive 1 6 19 1
33 11 I3I_{3} nonsplit multiplicative 1 1 3 3
55 44 I4I_{4} split multiplicative -1 1 4 4

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 4.12.0.7
33 3B 3.4.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 12, 12, 25], [1, 24, 0, 1], [97, 24, 96, 25], [1, 0, 24, 1], [16, 81, 95, 26], [114, 71, 85, 64], [15, 106, 14, 11], [94, 3, 15, 34], [97, 24, 84, 49]]
 
GL(2,Integers(120)).subgroup(gens)
 
Gens := [[1, 12, 12, 25], [1, 24, 0, 1], [97, 24, 96, 25], [1, 0, 24, 1], [16, 81, 95, 26], [114, 71, 85, 64], [15, 106, 14, 11], [94, 3, 15, 34], [97, 24, 84, 49]];
 
sub<GL(2,Integers(120))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 120=2335 120 = 2^{3} \cdot 3 \cdot 5 , index 384384, genus 55, and generators

(1121225),(12401),(97249625),(10241),(16819526),(114718564),(151061411),(9431534),(97248449)\left(\begin{array}{rr} 1 & 12 \\ 12 & 25 \end{array}\right),\left(\begin{array}{rr} 1 & 24 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 97 & 24 \\ 96 & 25 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 24 & 1 \end{array}\right),\left(\begin{array}{rr} 16 & 81 \\ 95 & 26 \end{array}\right),\left(\begin{array}{rr} 114 & 71 \\ 85 & 64 \end{array}\right),\left(\begin{array}{rr} 15 & 106 \\ 14 & 11 \end{array}\right),\left(\begin{array}{rr} 94 & 3 \\ 15 & 34 \end{array}\right),\left(\begin{array}{rr} 97 & 24 \\ 84 & 49 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[120])K:=\Q(E[120]) is a degree-9216092160 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/120Z)\GL_2(\Z/120\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 44 3 3
33 nonsplit multiplicative 44 320=265 320 = 2^{6} \cdot 5
55 split multiplicative 66 192=263 192 = 2^{6} \cdot 3

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 3, 4, 6 and 12.
Its isogeny class 960e consists of 8 curves linked by isogenies of degrees dividing 12.

Twists

The minimal quadratic twist of this elliptic curve is 30a5, its twist by 88.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/4Z\cong \Z/{4}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(6)\Q(\sqrt{6}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
22 Q(2)\Q(\sqrt{2}) Z/12Z\Z/12\Z 2.2.8.1-450.1-a7
44 4.4.153600.2 Z/8Z\Z/8\Z not in database
44 Q(2,3)\Q(\sqrt{2}, \sqrt{3}) Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database
66 6.0.34560000.1 Z/12Z\Z/12\Z not in database
88 8.0.12230590464.4 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
88 8.0.29859840000.6 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
88 8.8.849346560000.4 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
88 8.8.23592960000.1 Z/24Z\Z/24\Z not in database
1212 12.0.1194393600000000.3 Z/3ZZ/12Z\Z/3\Z \oplus \Z/12\Z not in database
1212 deg 12 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database
1616 deg 16 Z/16Z\Z/16\Z not in database
1616 16.0.149587343098087735296.14 Z/4ZZ/12Z\Z/4\Z \oplus \Z/12\Z not in database
1616 16.0.891610044825600000000.6 Z/2ZZ/24Z\Z/2\Z \oplus \Z/24\Z not in database
1616 deg 16 Z/2ZZ/24Z\Z/2\Z \oplus \Z/24\Z not in database
1818 18.6.172713999781822935859200000000.1 Z/36Z\Z/36\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5
Reduction type add nonsplit split
λ\lambda-invariant(s) - 0 1
μ\mu-invariant(s) - 0 0

All Iwasawa λ\lambda and μ\mu-invariants for primes p5p\ge 5 of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.