Properties

Label 960h4
Conductor 960960
Discriminant 435356467200-435356467200
j-invariant 286328813286025 \frac{2863288}{13286025}
CM no
Rank 11
Torsion structure Z/4Z\Z/{4}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3+x2+95x+31775y^2=x^3+x^2+95x+31775 Copy content Toggle raw display (homogenize, simplify)
y2z=x3+x2z+95xz2+31775z3y^2z=x^3+x^2z+95xz^2+31775z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3+7668x+23140944y^2=x^3+7668x+23140944 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 1, 0, 95, 31775])
 
gp: E = ellinit([0, 1, 0, 95, 31775])
 
magma: E := EllipticCurve([0, 1, 0, 95, 31775]);
 
oscar: E = elliptic_curve([0, 1, 0, 95, 31775])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/4Z\Z \oplus \Z/{4}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(5,180)(5, 180)0.595727432963826170963943464420.59572743296382617096394346442\infty
(23,216)(23, 216)0044

Integral points

(31,0) \left(-31, 0\right) , (25,±120)(-25,\pm 120), (5,±180)(5,\pm 180), (23,±216)(23,\pm 216), (50,±405)(50,\pm 405), (113,±1224)(113,\pm 1224), (119,±1320)(119,\pm 1320), (455,±9720)(455,\pm 9720), (179543,±76077096)(179543,\pm 76077096) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  960 960  = 26352^{6} \cdot 3 \cdot 5
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  435356467200-435356467200 = 121531252-1 \cdot 2^{15} \cdot 3^{12} \cdot 5^{2}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  286328813286025 \frac{2863288}{13286025}  = 23312527132^{3} \cdot 3^{-12} \cdot 5^{-2} \cdot 71^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.912214030497636563585580808380.91221403049763656358558080838
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.0457800547977049268140406565570.045780054797704926814040656557
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.17382695183310811.1738269518331081
Szpiro ratio: σm\sigma_{m} ≈ 4.9882567374309754.988256737430975

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 0.595727432963826170963943464420.59572743296382617096394346442
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.740324659494243382756505971540.74032465949424338275650597154
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 96 96  = 22(223)2 2^{2}\cdot( 2^{2} \cdot 3 )\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 44
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 2.64619025376194586613828942462.6461902537619458661382894246
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

2.646190254L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.7403250.59572796422.646190254\displaystyle 2.646190254 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.740325 \cdot 0.595727 \cdot 96}{4^2} \approx 2.646190254

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   960.2.a.m

q+q3+q54q7+q94q116q13+q15+2q174q19+O(q20) q + q^{3} + q^{5} - 4 q^{7} + q^{9} - 4 q^{11} - 6 q^{13} + q^{15} + 2 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 1536
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 44 I5I_{5}^{*} additive 1 6 15 0
33 1212 I12I_{12} split multiplicative -1 1 12 12
55 22 I2I_{2} split multiplicative -1 1 2 2

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 8.24.0.48

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 0, 8, 1], [1, 8, 0, 1], [0, 7, 23, 12], [0, 7, 5, 18], [17, 8, 16, 9], [17, 8, 20, 9], [1, 4, 4, 17], [7, 6, 18, 19]]
 
GL(2,Integers(24)).subgroup(gens)
 
Gens := [[1, 0, 8, 1], [1, 8, 0, 1], [0, 7, 23, 12], [0, 7, 5, 18], [17, 8, 16, 9], [17, 8, 20, 9], [1, 4, 4, 17], [7, 6, 18, 19]];
 
sub<GL(2,Integers(24))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has label 24.48.0-24.n.1.4, level 24=233 24 = 2^{3} \cdot 3 , index 4848, genus 00, and generators

(1081),(1801),(072312),(07518),(178169),(178209),(14417),(761819)\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 0 & 7 \\ 23 & 12 \end{array}\right),\left(\begin{array}{rr} 0 & 7 \\ 5 & 18 \end{array}\right),\left(\begin{array}{rr} 17 & 8 \\ 16 & 9 \end{array}\right),\left(\begin{array}{rr} 17 & 8 \\ 20 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 18 & 19 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[24])K:=\Q(E[24]) is a degree-15361536 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/24Z)\GL_2(\Z/24\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 44 1 1
33 split multiplicative 44 320=265 320 = 2^{6} \cdot 5
55 split multiplicative 66 192=263 192 = 2^{6} \cdot 3

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2 and 4.
Its isogeny class 960h consists of 4 curves linked by isogenies of degrees dividing 4.

Twists

The minimal quadratic twist of this elliptic curve is 480e4, its twist by 88.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/4Z\cong \Z/{4}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(2)\Q(\sqrt{-2}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z 2.0.8.1-7200.2-q1
44 4.2.18432.2 Z/8Z\Z/8\Z not in database
88 8.0.10485760000.8 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
88 8.0.212336640000.14 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
88 8.0.339738624.10 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
88 8.2.358318080000.3 Z/12Z\Z/12\Z not in database
1616 deg 16 Z/16Z\Z/16\Z not in database
1616 deg 16 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add split split ord ord ord ord ord ss ord ord ord ord ord ord
λ\lambda-invariant(s) - 2 2 1 1 1 1 1 1,1 1 1 1 1 1 1
μ\mu-invariant(s) - 0 0 0 0 0 0 0 0,0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.