Properties

Label 9633.p
Number of curves $2$
Conductor $9633$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("p1")
 
E.isogeny_class()
 

Elliptic curves in class 9633.p

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
9633.p1 9633p2 \([0, 1, 1, -741966, -246241771]\) \(-9358714467168256/22284891\) \(-107564912442819\) \([]\) \(115200\) \(1.9339\)  
9633.p2 9633p1 \([0, 1, 1, 3324, -83131]\) \(841232384/1121931\) \(-5415346648179\) \([]\) \(23040\) \(1.1292\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 9633.p have rank \(1\).

Complex multiplication

The elliptic curves in class 9633.p do not have complex multiplication.

Modular form 9633.2.a.p

sage: E.q_eigenform(10)
 
\(q + 2 q^{2} + q^{3} + 2 q^{4} - q^{5} + 2 q^{6} - 3 q^{7} + q^{9} - 2 q^{10} + 3 q^{11} + 2 q^{12} - 6 q^{14} - q^{15} - 4 q^{16} + 3 q^{17} + 2 q^{18} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.