sage:E = EllipticCurve("p1")
E.isogeny_class()
Elliptic curves in class 9633.p
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
9633.p1 |
9633p2 |
[0,1,1,−741966,−246241771] |
−9358714467168256/22284891 |
−107564912442819 |
[] |
115200 |
1.9339
|
|
9633.p2 |
9633p1 |
[0,1,1,3324,−83131] |
841232384/1121931 |
−5415346648179 |
[] |
23040 |
1.1292
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curves in class 9633.p have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
3 | 1−T |
13 | 1 |
19 | 1−T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
2 |
1−2T+2T2 |
1.2.ac
|
5 |
1+T+5T2 |
1.5.b
|
7 |
1+3T+7T2 |
1.7.d
|
11 |
1−3T+11T2 |
1.11.ad
|
17 |
1−3T+17T2 |
1.17.ad
|
23 |
1−4T+23T2 |
1.23.ae
|
29 |
1+10T+29T2 |
1.29.k
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 9633.p do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
(1551)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.