Properties

Label 9702.bh
Number of curves $2$
Conductor $9702$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bh1")
 
E.isogeny_class()
 

Elliptic curves in class 9702.bh

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
9702.bh1 9702bl2 \([1, -1, 1, -2064341, -1141100243]\) \(144106117295241933/247808\) \(1673018468352\) \([2]\) \(118272\) \(2.0344\)  
9702.bh2 9702bl1 \([1, -1, 1, -128981, -17817299]\) \(-35148950502093/46137344\) \(-311485620289536\) \([2]\) \(59136\) \(1.6878\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 9702.bh have rank \(0\).

Complex multiplication

The elliptic curves in class 9702.bh do not have complex multiplication.

Modular form 9702.2.a.bh

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - 2 q^{5} + q^{8} - 2 q^{10} + q^{11} + 2 q^{13} + q^{16} - 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.