y 2 + x y = x 3 − x 2 − 513 x − 1625 y^2+xy=x^3-x^2-513x-1625 y 2 + x y = x 3 − x 2 − 5 1 3 x − 1 6 2 5
(homogenize , simplify )
y 2 z + x y z = x 3 − x 2 z − 513 x z 2 − 1625 z 3 y^2z+xyz=x^3-x^2z-513xz^2-1625z^3 y 2 z + x y z = x 3 − x 2 z − 5 1 3 x z 2 − 1 6 2 5 z 3
(dehomogenize , simplify )
y 2 = x 3 − 8211 x − 112210 y^2=x^3-8211x-112210 y 2 = x 3 − 8 2 1 1 x − 1 1 2 2 1 0
(homogenize , minimize )
sage: E = EllipticCurve([1, -1, 0, -513, -1625])
gp: E = ellinit([1, -1, 0, -513, -1625])
magma: E := EllipticCurve([1, -1, 0, -513, -1625]);
oscar: E = elliptic_curve([1, -1, 0, -513, -1625])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z ⊕ Z / 2 Z \Z \oplus \Z/{2}\Z Z ⊕ Z / 2 Z
magma: MordellWeilGroup(E);
P P P h ^ ( P ) \hat{h}(P) h ^ ( P ) Order
( 27 , 47 ) (27, 47) ( 2 7 , 4 7 ) 1.2357695545871302965207814922 1.2357695545871302965207814922 1 . 2 3 5 7 6 9 5 5 4 5 8 7 1 3 0 2 9 6 5 2 0 7 8 1 4 9 2 2 ∞ \infty ∞
( − 13 / 4 , 13 / 8 ) (-13/4, 13/8) ( − 1 3 / 4 , 1 3 / 8 ) 0 0 0 2 2 2
( − 19 , 41 ) \left(-19, 41\right) ( − 1 9 , 4 1 ) , ( − 19 , − 22 ) \left(-19, -22\right) ( − 1 9 , − 2 2 ) , ( 27 , 47 ) \left(27, 47\right) ( 2 7 , 4 7 ) , ( 27 , − 74 ) \left(27, -74\right) ( 2 7 , − 7 4 ) , ( 129 , 1373 ) \left(129, 1373\right) ( 1 2 9 , 1 3 7 3 ) , ( 129 , − 1502 ) \left(129, -1502\right) ( 1 2 9 , − 1 5 0 2 )
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor :
N N N
=
9702 9702 9 7 0 2 = 2 ⋅ 3 2 ⋅ 7 2 ⋅ 11 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 2 ⋅ 3 2 ⋅ 7 2 ⋅ 1 1
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
Discriminant :
Δ \Delta Δ
=
7321876254 7321876254 7 3 2 1 8 7 6 2 5 4 = 2 ⋅ 3 6 ⋅ 7 3 ⋅ 1 1 4 2 \cdot 3^{6} \cdot 7^{3} \cdot 11^{4} 2 ⋅ 3 6 ⋅ 7 3 ⋅ 1 1 4
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
j-invariant :
j j j
=
59776471 29282 \frac{59776471}{29282} 2 9 2 8 2 5 9 7 7 6 4 7 1 = 2 − 1 ⋅ 1 1 − 4 ⋅ 1 7 3 ⋅ 2 3 3 2^{-1} \cdot 11^{-4} \cdot 17^{3} \cdot 23^{3} 2 − 1 ⋅ 1 1 − 4 ⋅ 1 7 3 ⋅ 2 3 3
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
sage: E.has_cm()
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ 0.58614123716284724735330935286 0.58614123716284724735330935286 0 . 5 8 6 1 4 1 2 3 7 1 6 2 8 4 7 2 4 7 3 5 3 3 0 9 3 5 2 8 6
gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ − 0.44964244443503592462065145146 -0.44964244443503592462065145146 − 0 . 4 4 9 6 4 2 4 4 4 4 3 5 0 3 5 9 2 4 6 2 0 6 5 1 4 5 1 4 6
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 0.9351709585231328 0.9351709585231328 0 . 9 3 5 1 7 0 9 5 8 5 2 3 1 3 2 8
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 3.30449218755733 3.30449218755733 3 . 3 0 4 4 9 2 1 8 7 5 5 7 3 3
Analytic rank :
r a n r_{\mathrm{an}} r a n = 1 1 1
sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
Mordell-Weil rank :
r r r = 1 1 1
sage: E.rank()
gp: [lower,upper] = ellrank(E)
magma: Rank(E);
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) ≈ 1.2357695545871302965207814922 1.2357695545871302965207814922 1 . 2 3 5 7 6 9 5 5 4 5 8 7 1 3 0 2 9 6 5 2 0 7 8 1 4 9 2 2
sage: E.regulator()
gp: G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
magma: Regulator(E);
Real period :
Ω \Omega Ω ≈ 1.0541881456499347871353021519 1.0541881456499347871353021519 1 . 0 5 4 1 8 8 1 4 5 6 4 9 9 3 4 7 8 7 1 3 5 3 0 2 1 5 1 9
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 8 8 8
= 1 ⋅ 2 ⋅ 2 ⋅ 2 1\cdot2\cdot2\cdot2 1 ⋅ 2 ⋅ 2 ⋅ 2
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 2 2 2
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ′ ( E , 1 ) L'(E,1) L ′ ( E , 1 ) ≈ 2.6054672304017055011428325549 2.6054672304017055011428325549 2 . 6 0 5 4 6 7 2 3 0 4 0 1 7 0 5 5 0 1 1 4 2 8 3 2 5 5 4 9
sage: r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
≈
1 1 1
(rounded )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
2.605467230 ≈ L ′ ( E , 1 ) = # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 1.054188 ⋅ 1.235770 ⋅ 8 2 2 ≈ 2.605467230 \begin{aligned} 2.605467230 \approx L'(E,1) & = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.054188 \cdot 1.235770 \cdot 8}{2^2} \\ & \approx 2.605467230\end{aligned} 2 . 6 0 5 4 6 7 2 3 0 ≈ L ′ ( E , 1 ) = # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 2 2 1 ⋅ 1 . 0 5 4 1 8 8 ⋅ 1 . 2 3 5 7 7 0 ⋅ 8 ≈ 2 . 6 0 5 4 6 7 2 3 0
sage: # self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve([1, -1, 0, -513, -1625]); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
magma: /* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve([1, -1, 0, -513, -1625]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
9702.2.a.e
q − q 2 + q 4 − 2 q 5 − q 8 + 2 q 10 − q 11 − 2 q 13 + q 16 + 2 q 19 + O ( q 20 ) q - q^{2} + q^{4} - 2 q^{5} - q^{8} + 2 q^{10} - q^{11} - 2 q^{13} + q^{16} + 2 q^{19} + O(q^{20}) q − q 2 + q 4 − 2 q 5 − q 8 + 2 q 1 0 − q 1 1 − 2 q 1 3 + q 1 6 + 2 q 1 9 + O ( q 2 0 )
sage: E.q_eigenform(20)
gp: \\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
magma: ModularForm(E);
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable .
There
are 4 primes p p p
of bad reduction :
sage: E.local_data()
gp: ellglobalred(E)[5]
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage: gens = [[1, 2, 2, 5], [36, 25, 49, 8], [2, 1, 27, 0], [3, 4, 8, 11], [53, 4, 52, 5], [12, 1, 39, 0], [1, 4, 0, 1], [1, 0, 4, 1]]
GL(2,Integers(56)).subgroup(gens)
magma: Gens := [[1, 2, 2, 5], [36, 25, 49, 8], [2, 1, 27, 0], [3, 4, 8, 11], [53, 4, 52, 5], [12, 1, 39, 0], [1, 4, 0, 1], [1, 0, 4, 1]];
sub<GL(2,Integers(56))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
label 56.12.0.bd.1 ,
level 56 = 2 3 ⋅ 7 56 = 2^{3} \cdot 7 5 6 = 2 3 ⋅ 7 , index 12 12 1 2 , genus 0 0 0 , and generators
( 1 2 2 5 ) , ( 36 25 49 8 ) , ( 2 1 27 0 ) , ( 3 4 8 11 ) , ( 53 4 52 5 ) , ( 12 1 39 0 ) , ( 1 4 0 1 ) , ( 1 0 4 1 ) \left(\begin{array}{rr}
1 & 2 \\
2 & 5
\end{array}\right),\left(\begin{array}{rr}
36 & 25 \\
49 & 8
\end{array}\right),\left(\begin{array}{rr}
2 & 1 \\
27 & 0
\end{array}\right),\left(\begin{array}{rr}
3 & 4 \\
8 & 11
\end{array}\right),\left(\begin{array}{rr}
53 & 4 \\
52 & 5
\end{array}\right),\left(\begin{array}{rr}
12 & 1 \\
39 & 0
\end{array}\right),\left(\begin{array}{rr}
1 & 4 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
1 & 0 \\
4 & 1
\end{array}\right) ( 1 2 2 5 ) , ( 3 6 4 9 2 5 8 ) , ( 2 2 7 1 0 ) , ( 3 8 4 1 1 ) , ( 5 3 5 2 4 5 ) , ( 1 2 3 9 1 0 ) , ( 1 0 4 1 ) , ( 1 4 0 1 ) .
The torsion field K : = Q ( E [ 56 ] ) K:=\Q(E[56]) K : = Q ( E [ 5 6 ] ) is a degree-258048 258048 2 5 8 0 4 8 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 56 Z ) \GL_2(\Z/56\Z) GL 2 ( Z / 5 6 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
ℓ \ell ℓ
Reduction type
Serre weight
Serre conductor
2 2 2
nonsplit multiplicative
4 4 4
63 = 3 2 ⋅ 7 63 = 3^{2} \cdot 7 6 3 = 3 2 ⋅ 7
3 3 3
additive
6 6 6
1078 = 2 ⋅ 7 2 ⋅ 11 1078 = 2 \cdot 7^{2} \cdot 11 1 0 7 8 = 2 ⋅ 7 2 ⋅ 1 1
7 7 7
additive
20 20 2 0
198 = 2 ⋅ 3 2 ⋅ 11 198 = 2 \cdot 3^{2} \cdot 11 1 9 8 = 2 ⋅ 3 2 ⋅ 1 1
11 11 1 1
nonsplit multiplicative
12 12 1 2
882 = 2 ⋅ 3 2 ⋅ 7 2 882 = 2 \cdot 3^{2} \cdot 7^{2} 8 8 2 = 2 ⋅ 3 2 ⋅ 7 2
gp: ellisomat(E)
This curve has non-trivial cyclic isogenies of degree d d d for d = d= d =
2.
Its isogeny class 9702r
consists of 2 curves linked by isogenies of
degree 2.
The minimal quadratic twist of this elliptic curve is
1078l2 , its twist by − 3 -3 − 3 .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
≅ Z / 2 Z \cong \Z/{2}\Z ≅ Z / 2 Z
are as follows:
[ K : Q ] [K:\Q] [ K : Q ]
K K K
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s
Base change curve
2 2 2
Q ( 14 ) \Q(\sqrt{14}) Q ( 1 4 )
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z \oplus \Z/2\Z Z / 2 Z ⊕ Z / 2 Z
not in database
4 4 4
4.0.98784.1
Z / 4 Z \Z/4\Z Z / 4 Z
not in database
8 8 8
8.4.39969909374976.58
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
8 8 8
8.0.624529833984.6
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
8 8 8
deg 8
Z / 6 Z \Z/6\Z Z / 6 Z
not in database
16 16 1 6
deg 16
Z / 8 Z \Z/8\Z Z / 8 Z
not in database
16 16 1 6
deg 16
Z / 2 Z ⊕ Z / 6 Z \Z/2\Z \oplus \Z/6\Z Z / 2 Z ⊕ Z / 6 Z
not in database
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
An entry - indicates that the invariants are not computed because the reduction is additive.
p p p -adic regulators
p p p -adic regulators are not yet computed for curves that are not Γ 0 \Gamma_0 Γ 0 -optimal.