Properties

Label 97344fh
Number of curves $4$
Conductor $97344$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("fh1")
 
E.isogeny_class()
 

Elliptic curves in class 97344fh

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
97344.br3 97344fh1 \([0, 0, 0, -44616, 2091544]\) \(2725888/1053\) \(3794162872660992\) \([2]\) \(344064\) \(1.6883\) \(\Gamma_0(N)\)-optimal
97344.br2 97344fh2 \([0, 0, 0, -318396, -67667600]\) \(61918288/1521\) \(87687319723720704\) \([2, 2]\) \(688128\) \(2.0349\)  
97344.br4 97344fh3 \([0, 0, 0, 46644, -213829616]\) \(48668/85683\) \(-19758876044411731968\) \([2]\) \(1376256\) \(2.3815\)  
97344.br1 97344fh4 \([0, 0, 0, -5063916, -4386090800]\) \(62275269892/39\) \(8993571253714944\) \([2]\) \(1376256\) \(2.3815\)  

Rank

sage: E.rank()
 

The elliptic curves in class 97344fh have rank \(1\).

Complex multiplication

The elliptic curves in class 97344fh do not have complex multiplication.

Modular form 97344.2.a.fh

sage: E.q_eigenform(10)
 
\(q - 2 q^{5} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.