Properties

Label 975a5
Conductor 975975
Discriminant 9.283×10129.283\times 10^{12}
j-invariant 59319456301170001594140625 \frac{59319456301170001}{594140625}
CM no
Rank 11
Torsion structure Z/2ZZ/2Z\Z/{2}\Z \oplus \Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3+x2203125x35321000y^2+xy=x^3+x^2-203125x-35321000 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3+x2z203125xz235321000z3y^2z+xyz=x^3+x^2z-203125xz^2-35321000z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3263250675x1643987819250y^2=x^3-263250675x-1643987819250 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 1, 0, -203125, -35321000])
 
gp: E = ellinit([1, 1, 0, -203125, -35321000])
 
magma: E := EllipticCurve([1, 1, 0, -203125, -35321000]);
 
oscar: E = elliptic_curve([1, 1, 0, -203125, -35321000])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2ZZ/2Z\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(878361/3364,27647851/195112)(-878361/3364, 27647851/195112)11.56281329162669503180083143511.562813291626695031800831435\infty
(260,130)(-260, 130)0022
(520,260)(520, -260)0022

Integral points

(260,130) \left(-260, 130\right) , (520,260) \left(520, -260\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  975 975  = 352133 \cdot 5^{2} \cdot 13
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  92834472656259283447265625 = 325141323^{2} \cdot 5^{14} \cdot 13^{2}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  59319456301170001594140625 \frac{59319456301170001}{594140625}  = 325813239000133^{-2} \cdot 5^{-8} \cdot 13^{-2} \cdot 390001^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.64756243373171141956596047941.6475624337317114195659604794
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.842843477514661232265580812790.84284347751466123226558081279
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.01234084153979251.0123408415397925
Szpiro ratio: σm\sigma_{m} ≈ 7.0147155603900187.014715560390018

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 11.56281329162669503180083143511.562813291626695031800831435
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.224884070037754188065724485820.22488407003775418806572448582
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 16 16  = 2222 2\cdot2^{2}\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 44
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 2.60029251410765272698108343072.6002925141076527269810834307
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

2.600292514L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.22488411.56281316422.600292514\displaystyle 2.600292514 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.224884 \cdot 11.562813 \cdot 16}{4^2} \approx 2.600292514

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   975.2.a.i

q+q2q3q4q63q8+q9+4q11+q12q13q162q17+q184q19+O(q20) q + q^{2} - q^{3} - q^{4} - q^{6} - 3 q^{8} + q^{9} + 4 q^{11} + q^{12} - q^{13} - q^{16} - 2 q^{17} + q^{18} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 4608
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
33 22 I2I_{2} nonsplit multiplicative 1 1 2 2
55 44 I8I_{8}^{*} additive 1 2 14 8
1313 22 I2I_{2} nonsplit multiplicative 1 1 2 2

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2Cs 16.48.0.7

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 16, 0, 2341], [1, 16, 0, 1], [9, 8, 3058, 1895], [1, 0, 16, 1], [2081, 16, 6, 97], [13, 8, 2330, 3077], [1, 16, 4, 65], [2487, 3112, 668, 39], [3105, 16, 3104, 17]]
 
GL(2,Integers(3120)).subgroup(gens)
 
Gens := [[1, 16, 0, 2341], [1, 16, 0, 1], [9, 8, 3058, 1895], [1, 0, 16, 1], [2081, 16, 6, 97], [13, 8, 2330, 3077], [1, 16, 4, 65], [2487, 3112, 668, 39], [3105, 16, 3104, 17]];
 
sub<GL(2,Integers(3120))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 3120=243513 3120 = 2^{4} \cdot 3 \cdot 5 \cdot 13 , index 768768, genus 1313, and generators

(11602341),(11601),(9830581895),(10161),(208116697),(13823303077),(116465),(2487311266839),(310516310417)\left(\begin{array}{rr} 1 & 16 \\ 0 & 2341 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 9 & 8 \\ 3058 & 1895 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 2081 & 16 \\ 6 & 97 \end{array}\right),\left(\begin{array}{rr} 13 & 8 \\ 2330 & 3077 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 4 & 65 \end{array}\right),\left(\begin{array}{rr} 2487 & 3112 \\ 668 & 39 \end{array}\right),\left(\begin{array}{rr} 3105 & 16 \\ 3104 & 17 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[3120])K:=\Q(E[3120]) is a degree-1932263424019322634240 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/3120Z)\GL_2(\Z/3120\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 good 22 25=52 25 = 5^{2}
33 nonsplit multiplicative 44 325=5213 325 = 5^{2} \cdot 13
55 additive 1818 39=313 39 = 3 \cdot 13
1313 nonsplit multiplicative 1414 75=352 75 = 3 \cdot 5^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 4 and 8.
Its isogeny class 975a consists of 8 curves linked by isogenies of degrees dividing 16.

Twists

The minimal quadratic twist of this elliptic curve is 195a5, its twist by 55.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2ZZ/2Z\cong \Z/{2}\Z \oplus \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(5)\Q(\sqrt{-5}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(5,39)\Q(\sqrt{5}, \sqrt{39}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(5,39)\Q(\sqrt{5}, \sqrt{-39}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(5,26)\Q(\sqrt{-5}, \sqrt{26}) Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
88 8.0.370150560000.8 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
88 8.0.3317760000.9 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
88 8.2.79054616671875.4 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 16.0.8979181539709000089600000000.26 Z/4ZZ/8Z\Z/4\Z \oplus \Z/8\Z not in database
1616 16.0.16806995817636085862174923161600000000.77 Z/2ZZ/16Z\Z/2\Z \oplus \Z/16\Z not in database
1616 16.0.2561651549708289264163225600000000.3 Z/2ZZ/16Z\Z/2\Z \oplus \Z/16\Z not in database
1616 deg 16 Z/2ZZ/16Z\Z/2\Z \oplus \Z/16\Z not in database
1616 deg 16 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type ord nonsplit add ss ord nonsplit ord ord ord ord ord ord ord ord ord
λ\lambda-invariant(s) 4 1 - 1,1 1 1 1 3 1 1 1 1 1 1 1
μ\mu-invariant(s) 3 0 - 0,0 0 0 0 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.