Properties

Label 9792bs
Number of curves 44
Conductor 97929792
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bs1")
 
E.isogeny_class()
 

Elliptic curves in class 9792bs

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
9792.i4 9792bs1 [0,0,0,396,1296][0, 0, 0, -396, 1296] 35937/1735937/17 32487505923248750592 [2][2] 40964096 0.519240.51924 Γ0(N)\Gamma_0(N)-optimal
9792.i2 9792bs2 [0,0,0,3276,71280][0, 0, 0, -3276, -71280] 20346417/28920346417/289 5522876006455228760064 [2,2][2, 2] 81928192 0.865820.86582  
9792.i1 9792bs3 [0,0,0,52236,4595184][0, 0, 0, -52236, -4595184] 82483294977/1782483294977/17 32487505923248750592 [2][2] 1638416384 1.21241.2124  
9792.i3 9792bs4 [0,0,0,396,192240][0, 0, 0, -396, -192240] 35937/83521-35937/83521 15961111658496-15961111658496 [2][2] 1638416384 1.21241.2124  

Rank

sage: E.rank()
 

The elliptic curves in class 9792bs have rank 11.

Complex multiplication

The elliptic curves in class 9792bs do not have complex multiplication.

Modular form 9792.2.a.bs

sage: E.q_eigenform(10)
 
q2q54q7+2q13q174q19+O(q20)q - 2 q^{5} - 4 q^{7} + 2 q^{13} - q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.