E = EllipticCurve("bs1")
E.isogeny_class()
Elliptic curves in class 9792bs
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
9792.i4 |
9792bs1 |
[0,0,0,−396,1296] |
35937/17 |
3248750592 |
[2] |
4096 |
0.51924
|
Γ0(N)-optimal |
9792.i2 |
9792bs2 |
[0,0,0,−3276,−71280] |
20346417/289 |
55228760064 |
[2,2] |
8192 |
0.86582
|
|
9792.i1 |
9792bs3 |
[0,0,0,−52236,−4595184] |
82483294977/17 |
3248750592 |
[2] |
16384 |
1.2124
|
|
9792.i3 |
9792bs4 |
[0,0,0,−396,−192240] |
−35937/83521 |
−15961111658496 |
[2] |
16384 |
1.2124
|
|
The elliptic curves in class 9792bs have
rank 1.
The elliptic curves in class 9792bs do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.