Properties

Label 980.e
Number of curves 22
Conductor 980980
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("e1")
 
E.isogeny_class()
 

Elliptic curves in class 980.e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
980.e1 980f1 [0,1,0,48820,4138168][0, -1, 0, -48820, -4138168] 177953104/125-177953104/125 9039207968000-9039207968000 [][] 30243024 1.42231.4223 Γ0(N)\Gamma_0(N)-optimal
980.e2 980f2 [0,1,0,47220,17660600][0, -1, 0, 47220, -17660600] 161017136/1953125161017136/1953125 141237624500000000-141237624500000000 [][] 90729072 1.97161.9716  

Rank

sage: E.rank()
 

The elliptic curves in class 980.e have rank 00.

Complex multiplication

The elliptic curves in class 980.e do not have complex multiplication.

Modular form 980.2.a.e

sage: E.q_eigenform(10)
 
qq3+q52q9+6q112q13q15+6q178q19+O(q20)q - q^{3} + q^{5} - 2 q^{9} + 6 q^{11} - 2 q^{13} - q^{15} + 6 q^{17} - 8 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1331)\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.