Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
26.a1 |
26a2 |
26.a |
26a |
$3$ |
$9$ |
\( 2 \cdot 13 \) |
\( - 2^{9} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
9.24.0.3 |
3B.1.2 |
$936$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$6$ |
$0.054386$ |
$-10730978619193/6656$ |
$1.02193$ |
$9.20911$ |
$[1, 0, 1, -460, -3830]$ |
\(y^2+xy+y=x^3-460x-3830\) |
3.8.0-3.a.1.1, 9.24.0-9.a.1.1, 104.2.0.?, 117.72.0.?, 312.16.0.?, $\ldots$ |
$[]$ |
208.a1 |
208a3 |
208.a |
208a |
$3$ |
$9$ |
\( 2^{4} \cdot 13 \) |
\( - 2^{21} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$936$ |
$144$ |
$3$ |
$0.166288191$ |
$1$ |
|
$6$ |
$144$ |
$0.747534$ |
$-10730978619193/6656$ |
$1.02193$ |
$7.17970$ |
$[0, -1, 0, -7352, 245104]$ |
\(y^2=x^3-x^2-7352x+245104\) |
3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.2, 36.24.0-9.a.1.1, 104.2.0.?, $\ldots$ |
$[(60, 128)]$ |
234.e1 |
234e3 |
234.e |
234e |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 13 \) |
\( - 2^{9} \cdot 3^{6} \cdot 13 \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.24.0.1 |
3B.1.1 |
$936$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$2$ |
$180$ |
$0.603693$ |
$-10730978619193/6656$ |
$1.02193$ |
$6.70828$ |
$[1, -1, 1, -4136, 103403]$ |
\(y^2+xy+y=x^3-x^2-4136x+103403\) |
3.8.0-3.a.1.2, 9.24.0-9.a.1.2, 104.2.0.?, 117.72.0.?, 312.16.0.?, $\ldots$ |
$[]$ |
338.f1 |
338c3 |
338.f |
338c |
$3$ |
$9$ |
\( 2 \cdot 13^{2} \) |
\( - 2^{9} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$936$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$1008$ |
$1.336861$ |
$-10730978619193/6656$ |
$1.02193$ |
$7.79555$ |
$[1, 0, 0, -77659, -8336303]$ |
\(y^2+xy=x^3-77659x-8336303\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.7, 39.8.0-3.a.1.2, 72.24.0.?, $\ldots$ |
$[]$ |
650.j1 |
650h3 |
650.j |
650h |
$3$ |
$9$ |
\( 2 \cdot 5^{2} \cdot 13 \) |
\( - 2^{9} \cdot 5^{6} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$4680$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$648$ |
$0.859105$ |
$-10730978619193/6656$ |
$1.02193$ |
$6.12335$ |
$[1, 1, 1, -11488, -478719]$ |
\(y^2+xy+y=x^3+x^2-11488x-478719\) |
3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.1, 45.24.0-9.a.1.2, 104.2.0.?, $\ldots$ |
$[]$ |
832.d1 |
832c3 |
832.d |
832c |
$3$ |
$9$ |
\( 2^{6} \cdot 13 \) |
\( - 2^{27} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$936$ |
$144$ |
$3$ |
$2.977948821$ |
$1$ |
|
$2$ |
$1152$ |
$1.094107$ |
$-10730978619193/6656$ |
$1.02193$ |
$6.31795$ |
$[0, -1, 0, -29409, -1931423]$ |
\(y^2=x^3-x^2-29409x-1931423\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.1, 72.24.0.?, 104.2.0.?, $\ldots$ |
$[(649, 15872)]$ |
832.i1 |
832g3 |
832.i |
832g |
$3$ |
$9$ |
\( 2^{6} \cdot 13 \) |
\( - 2^{27} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$936$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$1152$ |
$1.094107$ |
$-10730978619193/6656$ |
$1.02193$ |
$6.31795$ |
$[0, 1, 0, -29409, 1931423]$ |
\(y^2=x^3+x^2-29409x+1931423\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.3, 72.24.0.?, 78.8.0.?, $\ldots$ |
$[]$ |
1274.d1 |
1274c3 |
1274.d |
1274c |
$3$ |
$9$ |
\( 2 \cdot 7^{2} \cdot 13 \) |
\( - 2^{9} \cdot 7^{6} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$6552$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$2268$ |
$1.027342$ |
$-10730978619193/6656$ |
$1.02193$ |
$5.82938$ |
$[1, 1, 0, -22516, 1291088]$ |
\(y^2+xy=x^3+x^2-22516x+1291088\) |
3.4.0.a.1, 9.12.0.a.1, 21.8.0-3.a.1.2, 63.24.0-9.a.1.2, 104.2.0.?, $\ldots$ |
$[]$ |
1872.q1 |
1872s3 |
1872.q |
1872s |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{2} \cdot 13 \) |
\( - 2^{21} \cdot 3^{6} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$936$ |
$144$ |
$3$ |
$1$ |
$9$ |
$3$ |
$0$ |
$4320$ |
$1.296841$ |
$-10730978619193/6656$ |
$1.02193$ |
$5.96085$ |
$[0, 0, 0, -66171, -6551638]$ |
\(y^2=x^3-66171x-6551638\) |
3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.1, 36.24.0-9.a.1.2, 104.2.0.?, $\ldots$ |
$[]$ |
2704.f1 |
2704g3 |
2704.f |
2704g |
$3$ |
$9$ |
\( 2^{4} \cdot 13^{2} \) |
\( - 2^{21} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$936$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$24192$ |
$2.030006$ |
$-10730978619193/6656$ |
$1.02193$ |
$6.79680$ |
$[0, -1, 0, -1242544, 533523392]$ |
\(y^2=x^3-x^2-1242544x+533523392\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.5, 72.24.0.?, 104.2.0.?, $\ldots$ |
$[]$ |
3042.a1 |
3042f3 |
3042.a |
3042f |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 13^{2} \) |
\( - 2^{9} \cdot 3^{6} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$936$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$30240$ |
$1.886168$ |
$-10730978619193/6656$ |
$1.02193$ |
$6.48177$ |
$[1, -1, 0, -698931, 225080181]$ |
\(y^2+xy=x^3-x^2-698931x+225080181\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.8, 39.8.0-3.a.1.1, 72.24.0.?, $\ldots$ |
$[]$ |
3146.n1 |
3146l3 |
3146.n |
3146l |
$3$ |
$9$ |
\( 2 \cdot 11^{2} \cdot 13 \) |
\( - 2^{9} \cdot 11^{6} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$10296$ |
$144$ |
$3$ |
$0.259945423$ |
$1$ |
|
$6$ |
$6480$ |
$1.253334$ |
$-10730978619193/6656$ |
$1.02193$ |
$5.51181$ |
$[1, 0, 0, -55602, 5041796]$ |
\(y^2+xy=x^3-55602x+5041796\) |
3.4.0.a.1, 9.12.0.a.1, 33.8.0-3.a.1.1, 99.24.0.?, 104.2.0.?, $\ldots$ |
$[(142, 50)]$ |
5200.x1 |
5200p3 |
5200.x |
5200p |
$3$ |
$9$ |
\( 2^{4} \cdot 5^{2} \cdot 13 \) |
\( - 2^{21} \cdot 5^{6} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$4680$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$15552$ |
$1.552252$ |
$-10730978619193/6656$ |
$1.02193$ |
$5.60732$ |
$[0, 1, 0, -183808, 30270388]$ |
\(y^2=x^3+x^2-183808x+30270388\) |
3.4.0.a.1, 9.12.0.a.1, 60.8.0-3.a.1.1, 104.2.0.?, 117.36.0.?, $\ldots$ |
$[]$ |
5850.p1 |
5850i3 |
5850.p |
5850i |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{9} \cdot 3^{6} \cdot 5^{6} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$4680$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$19440$ |
$1.408411$ |
$-10730978619193/6656$ |
$1.02193$ |
$5.33219$ |
$[1, -1, 0, -103392, 12822016]$ |
\(y^2+xy=x^3-x^2-103392x+12822016\) |
3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.2, 45.24.0-9.a.1.1, 104.2.0.?, $\ldots$ |
$[]$ |
7488.g1 |
7488t3 |
7488.g |
7488t |
$3$ |
$9$ |
\( 2^{6} \cdot 3^{2} \cdot 13 \) |
\( - 2^{27} \cdot 3^{6} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$936$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$34560$ |
$1.643414$ |
$-10730978619193/6656$ |
$1.02193$ |
$5.50075$ |
$[0, 0, 0, -264684, 52413104]$ |
\(y^2=x^3-264684x+52413104\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.2, 72.24.0.?, 104.2.0.?, $\ldots$ |
$[]$ |
7488.h1 |
7488bv3 |
7488.h |
7488bv |
$3$ |
$9$ |
\( 2^{6} \cdot 3^{2} \cdot 13 \) |
\( - 2^{27} \cdot 3^{6} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$936$ |
$144$ |
$3$ |
$7.652505194$ |
$1$ |
|
$0$ |
$34560$ |
$1.643414$ |
$-10730978619193/6656$ |
$1.02193$ |
$5.50075$ |
$[0, 0, 0, -264684, -52413104]$ |
\(y^2=x^3-264684x-52413104\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.4, 72.24.0.?, 78.8.0.?, $\ldots$ |
$[(72714/5, 19277312/5)]$ |
7514.c1 |
7514b3 |
7514.c |
7514b |
$3$ |
$9$ |
\( 2 \cdot 13 \cdot 17^{2} \) |
\( - 2^{9} \cdot 13 \cdot 17^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$15912$ |
$144$ |
$3$ |
$1$ |
$9$ |
$3$ |
$0$ |
$30240$ |
$1.470993$ |
$-10730978619193/6656$ |
$1.02193$ |
$5.26677$ |
$[1, 1, 0, -132801, -18682763]$ |
\(y^2+xy=x^3+x^2-132801x-18682763\) |
3.4.0.a.1, 9.12.0.a.1, 51.8.0-3.a.1.1, 104.2.0.?, 117.36.0.?, $\ldots$ |
$[]$ |
8450.c1 |
8450c3 |
8450.c |
8450c |
$3$ |
$9$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{9} \cdot 5^{6} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$4680$ |
$144$ |
$3$ |
$7.974205950$ |
$1$ |
|
$0$ |
$108864$ |
$2.141579$ |
$-10730978619193/6656$ |
$1.02193$ |
$6.08836$ |
$[1, 1, 0, -1941475, -1042037875]$ |
\(y^2+xy=x^3+x^2-1941475x-1042037875\) |
3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 120.8.0.?, $\ldots$ |
$[(68491/2, 17795485/2)]$ |
9386.j1 |
9386g3 |
9386.j |
9386g |
$3$ |
$9$ |
\( 2 \cdot 13 \cdot 19^{2} \) |
\( - 2^{9} \cdot 13 \cdot 19^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$17784$ |
$144$ |
$3$ |
$0.299153525$ |
$1$ |
|
$6$ |
$42768$ |
$1.526606$ |
$-10730978619193/6656$ |
$1.02193$ |
$5.21165$ |
$[1, 1, 1, -165887, 25936485]$ |
\(y^2+xy+y=x^3+x^2-165887x+25936485\) |
3.4.0.a.1, 9.12.0.a.1, 57.8.0-3.a.1.2, 104.2.0.?, 117.36.0.?, $\ldots$ |
$[(207, 618)]$ |
10192.bg1 |
10192u3 |
10192.bg |
10192u |
$3$ |
$9$ |
\( 2^{4} \cdot 7^{2} \cdot 13 \) |
\( - 2^{21} \cdot 7^{6} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$6552$ |
$144$ |
$3$ |
$15.19254363$ |
$1$ |
|
$0$ |
$54432$ |
$1.720490$ |
$-10730978619193/6656$ |
$1.02193$ |
$5.41721$ |
$[0, 1, 0, -360264, -83350156]$ |
\(y^2=x^3+x^2-360264x-83350156\) |
3.4.0.a.1, 9.12.0.a.1, 84.8.0.?, 104.2.0.?, 117.36.0.?, $\ldots$ |
$[(53901310/249, 249537246848/249)]$ |
10816.k1 |
10816i3 |
10816.k |
10816i |
$3$ |
$9$ |
\( 2^{6} \cdot 13^{2} \) |
\( - 2^{27} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$936$ |
$144$ |
$3$ |
$7.626203082$ |
$1$ |
|
$0$ |
$193536$ |
$2.376583$ |
$-10730978619193/6656$ |
$1.02193$ |
$6.23015$ |
$[0, -1, 0, -4970177, -4263216959]$ |
\(y^2=x^3-x^2-4970177x-4263216959\) |
3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.4, 36.24.0-9.a.1.3, 104.2.0.?, $\ldots$ |
$[(69099/5, 6967532/5)]$ |
10816.z1 |
10816bf3 |
10816.z |
10816bf |
$3$ |
$9$ |
\( 2^{6} \cdot 13^{2} \) |
\( - 2^{27} \cdot 13^{7} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$936$ |
$144$ |
$3$ |
$1.071599764$ |
$1$ |
|
$12$ |
$193536$ |
$2.376583$ |
$-10730978619193/6656$ |
$1.02193$ |
$6.23015$ |
$[0, 1, 0, -4970177, 4263216959]$ |
\(y^2=x^3+x^2-4970177x+4263216959\) |
3.4.0.a.1, 6.8.0-3.a.1.2, 9.12.0.a.1, 18.24.0-9.a.1.2, 104.2.0.?, $\ldots$ |
$[(1295, 512), (1265, 1352)]$ |
11466.bj1 |
11466cd3 |
11466.bj |
11466cd |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2^{9} \cdot 3^{6} \cdot 7^{6} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$6552$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$68040$ |
$1.576647$ |
$-10730978619193/6656$ |
$1.02193$ |
$5.16428$ |
$[1, -1, 1, -202649, -35062023]$ |
\(y^2+xy+y=x^3-x^2-202649x-35062023\) |
3.4.0.a.1, 9.12.0.a.1, 21.8.0-3.a.1.1, 63.24.0-9.a.1.1, 104.2.0.?, $\ldots$ |
$[]$ |
13754.e1 |
13754d3 |
13754.e |
13754d |
$3$ |
$9$ |
\( 2 \cdot 13 \cdot 23^{2} \) |
\( - 2^{9} \cdot 13 \cdot 23^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$21528$ |
$144$ |
$3$ |
$3.363778387$ |
$1$ |
|
$0$ |
$76032$ |
$1.622133$ |
$-10730978619193/6656$ |
$1.02193$ |
$5.12296$ |
$[1, 0, 1, -243087, 46110402]$ |
\(y^2+xy+y=x^3-243087x+46110402\) |
3.4.0.a.1, 9.12.0.a.1, 69.8.0-3.a.1.1, 104.2.0.?, 117.36.0.?, $\ldots$ |
$[(10255/6, -28757/6)]$ |
16562.bd1 |
16562bm3 |
16562.bd |
16562bm |
$3$ |
$9$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{9} \cdot 7^{6} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$6552$ |
$144$ |
$3$ |
$0.311629297$ |
$1$ |
|
$8$ |
$381024$ |
$2.309814$ |
$-10730978619193/6656$ |
$1.02193$ |
$5.87443$ |
$[1, 1, 1, -3805292, 2855546637]$ |
\(y^2+xy+y=x^3+x^2-3805292x+2855546637\) |
3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 168.8.0.?, $\ldots$ |
$[(1149, 777)]$ |
20800.bd1 |
20800db3 |
20800.bd |
20800db |
$3$ |
$9$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( - 2^{27} \cdot 5^{6} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$4680$ |
$144$ |
$3$ |
$2.010370350$ |
$1$ |
|
$2$ |
$124416$ |
$1.898827$ |
$-10730978619193/6656$ |
$1.02193$ |
$5.24379$ |
$[0, -1, 0, -735233, 242898337]$ |
\(y^2=x^3-x^2-735233x+242898337\) |
3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 120.8.0.?, $\ldots$ |
$[(341, 5632)]$ |
20800.dc1 |
20800v3 |
20800.dc |
20800v |
$3$ |
$9$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( - 2^{27} \cdot 5^{6} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$4680$ |
$144$ |
$3$ |
$1$ |
$9$ |
$3$ |
$0$ |
$124416$ |
$1.898827$ |
$-10730978619193/6656$ |
$1.02193$ |
$5.24379$ |
$[0, 1, 0, -735233, -242898337]$ |
\(y^2=x^3+x^2-735233x-242898337\) |
3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 120.8.0.?, $\ldots$ |
$[]$ |
21866.h1 |
21866j3 |
21866.h |
21866j |
$3$ |
$9$ |
\( 2 \cdot 13 \cdot 29^{2} \) |
\( - 2^{9} \cdot 13 \cdot 29^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$27144$ |
$144$ |
$3$ |
$2.236970459$ |
$1$ |
|
$4$ |
$145152$ |
$1.738035$ |
$-10730978619193/6656$ |
$1.02193$ |
$5.02447$ |
$[1, 1, 1, -386457, -92630873]$ |
\(y^2+xy+y=x^3+x^2-386457x-92630873\) |
3.4.0.a.1, 9.12.0.a.1, 87.8.0.?, 104.2.0.?, 117.36.0.?, $\ldots$ |
$[(727, 3000)]$ |
24336.h1 |
24336by3 |
24336.h |
24336by |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{2} \cdot 13^{2} \) |
\( - 2^{21} \cdot 3^{6} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$936$ |
$144$ |
$3$ |
$9.618219435$ |
$1$ |
|
$0$ |
$725760$ |
$2.579315$ |
$-10730978619193/6656$ |
$1.02193$ |
$5.97079$ |
$[0, 0, 0, -11182899, -14393948686]$ |
\(y^2=x^3-11182899x-14393948686\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.6, 72.24.0.?, 104.2.0.?, $\ldots$ |
$[(2512601/25, 1171524224/25)]$ |
24986.b1 |
24986b3 |
24986.b |
24986b |
$3$ |
$9$ |
\( 2 \cdot 13 \cdot 31^{2} \) |
\( - 2^{9} \cdot 13 \cdot 31^{6} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$29016$ |
$144$ |
$3$ |
$1.512251788$ |
$1$ |
|
$8$ |
$181440$ |
$1.771379$ |
$-10730978619193/6656$ |
$1.02193$ |
$4.99780$ |
$[1, 1, 0, -441599, 112767301]$ |
\(y^2+xy=x^3+x^2-441599x+112767301\) |
3.4.0.a.1, 9.12.0.a.1, 93.8.0.?, 104.2.0.?, 117.36.0.?, $\ldots$ |
$[(369, 296), (3445/3, -5648/3)]$ |
25168.g1 |
25168bb3 |
25168.g |
25168bb |
$3$ |
$9$ |
\( 2^{4} \cdot 11^{2} \cdot 13 \) |
\( - 2^{21} \cdot 11^{6} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$10296$ |
$144$ |
$3$ |
$8.323604404$ |
$1$ |
|
$0$ |
$155520$ |
$1.946482$ |
$-10730978619193/6656$ |
$1.02193$ |
$5.20158$ |
$[0, -1, 0, -889632, -322674944]$ |
\(y^2=x^3-x^2-889632x-322674944\) |
3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 132.8.0.?, $\ldots$ |
$[(77034/5, 20226602/5)]$ |
28314.bb1 |
28314v3 |
28314.bb |
28314v |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 11^{2} \cdot 13 \) |
\( - 2^{9} \cdot 3^{6} \cdot 11^{6} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$10296$ |
$144$ |
$3$ |
$28.73315919$ |
$1$ |
|
$0$ |
$194400$ |
$1.802641$ |
$-10730978619193/6656$ |
$1.02193$ |
$4.97343$ |
$[1, -1, 0, -500418, -136128492]$ |
\(y^2+xy=x^3-x^2-500418x-136128492\) |
3.4.0.a.1, 9.12.0.a.1, 33.8.0-3.a.1.2, 99.24.0.?, 104.2.0.?, $\ldots$ |
$[(22322153230279/162622, 26158425788216272497/162622)]$ |
31850.cl1 |
31850bz3 |
31850.cl |
31850bz |
$3$ |
$9$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2^{9} \cdot 5^{6} \cdot 7^{6} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$32760$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$244944$ |
$1.832060$ |
$-10730978619193/6656$ |
$1.02193$ |
$4.95103$ |
$[1, 0, 0, -562913, 162511817]$ |
\(y^2+xy=x^3-562913x+162511817\) |
3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 105.8.0.?, 117.36.0.?, $\ldots$ |
$[]$ |
35594.e1 |
35594d3 |
35594.e |
35594d |
$3$ |
$9$ |
\( 2 \cdot 13 \cdot 37^{2} \) |
\( - 2^{9} \cdot 13 \cdot 37^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$34632$ |
$144$ |
$3$ |
$1$ |
$9$ |
$3$ |
$0$ |
$301320$ |
$1.859846$ |
$-10730978619193/6656$ |
$1.02193$ |
$4.93034$ |
$[1, 0, 0, -629084, -192101104]$ |
\(y^2+xy=x^3-629084x-192101104\) |
3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 111.8.0.?, 117.36.0.?, $\ldots$ |
$[]$ |
40768.ba1 |
40768dr3 |
40768.ba |
40768dr |
$3$ |
$9$ |
\( 2^{6} \cdot 7^{2} \cdot 13 \) |
\( - 2^{27} \cdot 7^{6} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$6552$ |
$144$ |
$3$ |
$1$ |
$9$ |
$3$ |
$0$ |
$435456$ |
$2.067062$ |
$-10730978619193/6656$ |
$1.02193$ |
$5.10155$ |
$[0, -1, 0, -1441057, -665360191]$ |
\(y^2=x^3-x^2-1441057x-665360191\) |
3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 168.8.0.?, $\ldots$ |
$[]$ |
40768.cn1 |
40768bl3 |
40768.cn |
40768bl |
$3$ |
$9$ |
\( 2^{6} \cdot 7^{2} \cdot 13 \) |
\( - 2^{27} \cdot 7^{6} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$6552$ |
$144$ |
$3$ |
$2.284397626$ |
$1$ |
|
$0$ |
$435456$ |
$2.067062$ |
$-10730978619193/6656$ |
$1.02193$ |
$5.10155$ |
$[0, 1, 0, -1441057, 665360191]$ |
\(y^2=x^3+x^2-1441057x+665360191\) |
3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 168.8.0.?, $\ldots$ |
$[(6235/3, 512/3)]$ |
40898.t1 |
40898i3 |
40898.t |
40898i |
$3$ |
$9$ |
\( 2 \cdot 11^{2} \cdot 13^{2} \) |
\( - 2^{9} \cdot 11^{6} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$10296$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$1088640$ |
$2.535809$ |
$-10730978619193/6656$ |
$1.02193$ |
$5.62973$ |
$[1, 0, 1, -9396742, 11086222552]$ |
\(y^2+xy+y=x^3-9396742x+11086222552\) |
3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 264.8.0.?, $\ldots$ |
$[]$ |
43706.f1 |
43706b3 |
43706.f |
43706b |
$3$ |
$9$ |
\( 2 \cdot 13 \cdot 41^{2} \) |
\( - 2^{9} \cdot 13 \cdot 41^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$38376$ |
$144$ |
$3$ |
$8.528522124$ |
$1$ |
|
$0$ |
$423360$ |
$1.911173$ |
$-10730978619193/6656$ |
$1.02193$ |
$4.89325$ |
$[1, 1, 0, -772454, -261632876]$ |
\(y^2+xy=x^3+x^2-772454x-261632876\) |
3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 123.8.0.?, $\ldots$ |
$[(156551/10, 47888919/10)]$ |
46800.cj1 |
46800db3 |
46800.cj |
46800db |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{21} \cdot 3^{6} \cdot 5^{6} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$4680$ |
$144$ |
$3$ |
$23.02585082$ |
$1$ |
|
$0$ |
$466560$ |
$2.101559$ |
$-10730978619193/6656$ |
$1.02193$ |
$5.07458$ |
$[0, 0, 0, -1654275, -818954750]$ |
\(y^2=x^3-1654275x-818954750\) |
3.4.0.a.1, 9.12.0.a.1, 60.8.0-3.a.1.2, 104.2.0.?, 117.36.0.?, $\ldots$ |
$[(180962143929/3541, 76663822213720192/3541)]$ |
48074.d1 |
48074e3 |
48074.d |
48074e |
$3$ |
$9$ |
\( 2 \cdot 13 \cdot 43^{2} \) |
\( - 2^{9} \cdot 13 \cdot 43^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$40248$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$487620$ |
$1.934986$ |
$-10730978619193/6656$ |
$1.02193$ |
$4.87652$ |
$[1, 1, 1, -849654, 301093363]$ |
\(y^2+xy+y=x^3+x^2-849654x+301093363\) |
3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 129.8.0.?, $\ldots$ |
$[]$ |
57434.c1 |
57434b3 |
57434.c |
57434b |
$3$ |
$9$ |
\( 2 \cdot 13 \cdot 47^{2} \) |
\( - 2^{9} \cdot 13 \cdot 47^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$43992$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$633420$ |
$1.979460$ |
$-10730978619193/6656$ |
$1.02193$ |
$4.84606$ |
$[1, 0, 1, -1015082, 393555868]$ |
\(y^2+xy+y=x^3-1015082x+393555868\) |
3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 141.8.0.?, $\ldots$ |
$[]$ |
60112.r1 |
60112x3 |
60112.r |
60112x |
$3$ |
$9$ |
\( 2^{4} \cdot 13 \cdot 17^{2} \) |
\( - 2^{21} \cdot 13 \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$15912$ |
$144$ |
$3$ |
$5.804679038$ |
$1$ |
|
$0$ |
$725760$ |
$2.164139$ |
$-10730978619193/6656$ |
$1.02193$ |
$5.02739$ |
$[0, 1, 0, -2124824, 1191447188]$ |
\(y^2=x^3+x^2-2124824x+1191447188\) |
3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 204.8.0.?, $\ldots$ |
$[(68566/9, 192896/9)]$ |
67600.co1 |
67600bn3 |
67600.co |
67600bn |
$3$ |
$9$ |
\( 2^{4} \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{21} \cdot 5^{6} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$4680$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$2612736$ |
$2.834728$ |
$-10730978619193/6656$ |
$1.02193$ |
$5.69788$ |
$[0, 1, 0, -31063608, 66628296788]$ |
\(y^2=x^3+x^2-31063608x+66628296788\) |
3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 120.8.0.?, $\ldots$ |
$[]$ |
67626.w1 |
67626bh3 |
67626.w |
67626bh |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( - 2^{9} \cdot 3^{6} \cdot 13 \cdot 17^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$15912$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$907200$ |
$2.020298$ |
$-10730978619193/6656$ |
$1.02193$ |
$4.81895$ |
$[1, -1, 1, -1195214, 503239389]$ |
\(y^2+xy+y=x^3-x^2-1195214x+503239389\) |
3.4.0.a.1, 9.12.0.a.1, 51.8.0-3.a.1.2, 104.2.0.?, 117.36.0.?, $\ldots$ |
$[]$ |
73034.k1 |
73034k3 |
73034.k |
73034k |
$3$ |
$9$ |
\( 2 \cdot 13 \cdot 53^{2} \) |
\( - 2^{9} \cdot 13 \cdot 53^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$49608$ |
$144$ |
$3$ |
$8.538195671$ |
$1$ |
|
$0$ |
$909792$ |
$2.039532$ |
$-10730978619193/6656$ |
$1.02193$ |
$4.80645$ |
$[1, 1, 1, -1290794, -564998601]$ |
\(y^2+xy+y=x^3+x^2-1290794x-564998601\) |
3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 159.8.0.?, $\ldots$ |
$[(1066089/5, 1097709903/5)]$ |
75088.w1 |
75088t3 |
75088.w |
75088t |
$3$ |
$9$ |
\( 2^{4} \cdot 13 \cdot 19^{2} \) |
\( - 2^{21} \cdot 13 \cdot 19^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$17784$ |
$144$ |
$3$ |
$15.80473641$ |
$1$ |
|
$0$ |
$1026432$ |
$2.219753$ |
$-10730978619193/6656$ |
$1.02193$ |
$4.98722$ |
$[0, 1, 0, -2654192, -1665243436]$ |
\(y^2=x^3+x^2-2654192x-1665243436\) |
3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 228.8.0.?, $\ldots$ |
$[(138675871/15, 1633052650994/15)]$ |
76050.en1 |
76050eh3 |
76050.en |
76050eh |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{9} \cdot 3^{6} \cdot 5^{6} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$4680$ |
$144$ |
$3$ |
$1.184744923$ |
$1$ |
|
$4$ |
$3265920$ |
$2.690887$ |
$-10730978619193/6656$ |
$1.02193$ |
$5.48459$ |
$[1, -1, 1, -17473280, 28117549347]$ |
\(y^2+xy+y=x^3-x^2-17473280x+28117549347\) |
3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 120.8.0.?, $\ldots$ |
$[(2415, -1039)]$ |
78650.k1 |
78650p3 |
78650.k |
78650p |
$3$ |
$9$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \cdot 13 \) |
\( - 2^{9} \cdot 5^{6} \cdot 11^{6} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$51480$ |
$144$ |
$3$ |
$2.751368418$ |
$1$ |
|
$0$ |
$699840$ |
$2.058052$ |
$-10730978619193/6656$ |
$1.02193$ |
$4.79458$ |
$[1, 1, 0, -1390050, 630224500]$ |
\(y^2+xy=x^3+x^2-1390050x+630224500\) |
3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 165.8.0.?, $\ldots$ |
$[(2719/2, -2477/2)]$ |
84474.ba1 |
84474q3 |
84474.ba |
84474q |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 13 \cdot 19^{2} \) |
\( - 2^{9} \cdot 3^{6} \cdot 13 \cdot 19^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$17784$ |
$144$ |
$3$ |
$39.02572643$ |
$1$ |
|
$0$ |
$1283040$ |
$2.075912$ |
$-10730978619193/6656$ |
$1.02193$ |
$4.78328$ |
$[1, -1, 0, -1492983, -701778083]$ |
\(y^2+xy=x^3-x^2-1492983x-701778083\) |
3.4.0.a.1, 9.12.0.a.1, 57.8.0-3.a.1.1, 104.2.0.?, 117.36.0.?, $\ldots$ |
$[(1633629628931365461/8792780, 2077208625492588618285491569/8792780)]$ |
90506.f1 |
90506d3 |
90506.f |
90506d |
$3$ |
$9$ |
\( 2 \cdot 13 \cdot 59^{2} \) |
\( - 2^{9} \cdot 13 \cdot 59^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$55224$ |
$144$ |
$3$ |
$0.801778643$ |
$1$ |
|
$4$ |
$1240272$ |
$2.093155$ |
$-10730978619193/6656$ |
$1.02193$ |
$4.77250$ |
$[1, 0, 0, -1599592, 778552384]$ |
\(y^2+xy=x^3-1599592x+778552384\) |
3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 177.8.0.?, $\ldots$ |
$[(408, 13720)]$ |