Learn more

Refine search


Results (1-50 of 116 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-mm images
26.a1 26.a 213 2 \cdot 13 00 trivial\mathsf{trivial} 11 [1,0,1,460,3830][1, 0, 1, -460, -3830] y2+xy+y=x3460x3830y^2+xy+y=x^3-460x-3830 3.8.0-3.a.1.1, 9.24.0-9.a.1.1, 104.2.0.?, 117.72.0.?, 312.16.0.?, \ldots
208.a1 208.a 2413 2^{4} \cdot 13 11 trivial\mathsf{trivial} 0.1662881910.166288191 [0,1,0,7352,245104][0, -1, 0, -7352, 245104] y2=x3x27352x+245104y^2=x^3-x^2-7352x+245104 3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.2, 36.24.0-9.a.1.1, 104.2.0.?, \ldots
234.e1 234.e 23213 2 \cdot 3^{2} \cdot 13 00 Z/3Z\Z/3\Z 11 [1,1,1,4136,103403][1, -1, 1, -4136, 103403] y2+xy+y=x3x24136x+103403y^2+xy+y=x^3-x^2-4136x+103403 3.8.0-3.a.1.2, 9.24.0-9.a.1.2, 104.2.0.?, 117.72.0.?, 312.16.0.?, \ldots
338.f1 338.f 2132 2 \cdot 13^{2} 00 trivial\mathsf{trivial} 11 [1,0,0,77659,8336303][1, 0, 0, -77659, -8336303] y2+xy=x377659x8336303y^2+xy=x^3-77659x-8336303 3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.7, 39.8.0-3.a.1.2, 72.24.0.?, \ldots
650.j1 650.j 25213 2 \cdot 5^{2} \cdot 13 00 trivial\mathsf{trivial} 11 [1,1,1,11488,478719][1, 1, 1, -11488, -478719] y2+xy+y=x3+x211488x478719y^2+xy+y=x^3+x^2-11488x-478719 3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.1, 45.24.0-9.a.1.2, 104.2.0.?, \ldots
832.d1 832.d 2613 2^{6} \cdot 13 11 trivial\mathsf{trivial} 2.9779488212.977948821 [0,1,0,29409,1931423][0, -1, 0, -29409, -1931423] y2=x3x229409x1931423y^2=x^3-x^2-29409x-1931423 3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.1, 72.24.0.?, 104.2.0.?, \ldots
832.i1 832.i 2613 2^{6} \cdot 13 00 trivial\mathsf{trivial} 11 [0,1,0,29409,1931423][0, 1, 0, -29409, 1931423] y2=x3+x229409x+1931423y^2=x^3+x^2-29409x+1931423 3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.3, 72.24.0.?, 78.8.0.?, \ldots
1274.d1 1274.d 27213 2 \cdot 7^{2} \cdot 13 00 trivial\mathsf{trivial} 11 [1,1,0,22516,1291088][1, 1, 0, -22516, 1291088] y2+xy=x3+x222516x+1291088y^2+xy=x^3+x^2-22516x+1291088 3.4.0.a.1, 9.12.0.a.1, 21.8.0-3.a.1.2, 63.24.0-9.a.1.2, 104.2.0.?, \ldots
1872.q1 1872.q 243213 2^{4} \cdot 3^{2} \cdot 13 00 trivial\mathsf{trivial} 11 [0,0,0,66171,6551638][0, 0, 0, -66171, -6551638] y2=x366171x6551638y^2=x^3-66171x-6551638 3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.1, 36.24.0-9.a.1.2, 104.2.0.?, \ldots
2704.f1 2704.f 24132 2^{4} \cdot 13^{2} 00 trivial\mathsf{trivial} 11 [0,1,0,1242544,533523392][0, -1, 0, -1242544, 533523392] y2=x3x21242544x+533523392y^2=x^3-x^2-1242544x+533523392 3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.5, 72.24.0.?, 104.2.0.?, \ldots
3042.a1 3042.a 232132 2 \cdot 3^{2} \cdot 13^{2} 00 trivial\mathsf{trivial} 11 [1,1,0,698931,225080181][1, -1, 0, -698931, 225080181] y2+xy=x3x2698931x+225080181y^2+xy=x^3-x^2-698931x+225080181 3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.8, 39.8.0-3.a.1.1, 72.24.0.?, \ldots
3146.n1 3146.n 211213 2 \cdot 11^{2} \cdot 13 11 trivial\mathsf{trivial} 0.2599454230.259945423 [1,0,0,55602,5041796][1, 0, 0, -55602, 5041796] y2+xy=x355602x+5041796y^2+xy=x^3-55602x+5041796 3.4.0.a.1, 9.12.0.a.1, 33.8.0-3.a.1.1, 99.24.0.?, 104.2.0.?, \ldots
5200.x1 5200.x 245213 2^{4} \cdot 5^{2} \cdot 13 00 trivial\mathsf{trivial} 11 [0,1,0,183808,30270388][0, 1, 0, -183808, 30270388] y2=x3+x2183808x+30270388y^2=x^3+x^2-183808x+30270388 3.4.0.a.1, 9.12.0.a.1, 60.8.0-3.a.1.1, 104.2.0.?, 117.36.0.?, \ldots
5850.p1 5850.p 2325213 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 00 trivial\mathsf{trivial} 11 [1,1,0,103392,12822016][1, -1, 0, -103392, 12822016] y2+xy=x3x2103392x+12822016y^2+xy=x^3-x^2-103392x+12822016 3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.2, 45.24.0-9.a.1.1, 104.2.0.?, \ldots
7488.g1 7488.g 263213 2^{6} \cdot 3^{2} \cdot 13 00 trivial\mathsf{trivial} 11 [0,0,0,264684,52413104][0, 0, 0, -264684, 52413104] y2=x3264684x+52413104y^2=x^3-264684x+52413104 3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.2, 72.24.0.?, 104.2.0.?, \ldots
7488.h1 7488.h 263213 2^{6} \cdot 3^{2} \cdot 13 11 trivial\mathsf{trivial} 7.6525051947.652505194 [0,0,0,264684,52413104][0, 0, 0, -264684, -52413104] y2=x3264684x52413104y^2=x^3-264684x-52413104 3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.4, 72.24.0.?, 78.8.0.?, \ldots
7514.c1 7514.c 213172 2 \cdot 13 \cdot 17^{2} 00 trivial\mathsf{trivial} 11 [1,1,0,132801,18682763][1, 1, 0, -132801, -18682763] y2+xy=x3+x2132801x18682763y^2+xy=x^3+x^2-132801x-18682763 3.4.0.a.1, 9.12.0.a.1, 51.8.0-3.a.1.1, 104.2.0.?, 117.36.0.?, \ldots
8450.c1 8450.c 252132 2 \cdot 5^{2} \cdot 13^{2} 11 trivial\mathsf{trivial} 7.9742059507.974205950 [1,1,0,1941475,1042037875][1, 1, 0, -1941475, -1042037875] y2+xy=x3+x21941475x1042037875y^2+xy=x^3+x^2-1941475x-1042037875 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 120.8.0.?, \ldots
9386.j1 9386.j 213192 2 \cdot 13 \cdot 19^{2} 11 trivial\mathsf{trivial} 0.2991535250.299153525 [1,1,1,165887,25936485][1, 1, 1, -165887, 25936485] y2+xy+y=x3+x2165887x+25936485y^2+xy+y=x^3+x^2-165887x+25936485 3.4.0.a.1, 9.12.0.a.1, 57.8.0-3.a.1.2, 104.2.0.?, 117.36.0.?, \ldots
10192.bg1 10192.bg 247213 2^{4} \cdot 7^{2} \cdot 13 11 trivial\mathsf{trivial} 15.1925436315.19254363 [0,1,0,360264,83350156][0, 1, 0, -360264, -83350156] y2=x3+x2360264x83350156y^2=x^3+x^2-360264x-83350156 3.4.0.a.1, 9.12.0.a.1, 84.8.0.?, 104.2.0.?, 117.36.0.?, \ldots
10816.k1 10816.k 26132 2^{6} \cdot 13^{2} 11 trivial\mathsf{trivial} 7.6262030827.626203082 [0,1,0,4970177,4263216959][0, -1, 0, -4970177, -4263216959] y2=x3x24970177x4263216959y^2=x^3-x^2-4970177x-4263216959 3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.4, 36.24.0-9.a.1.3, 104.2.0.?, \ldots
10816.z1 10816.z 26132 2^{6} \cdot 13^{2} 22 trivial\mathsf{trivial} 1.0715997641.071599764 [0,1,0,4970177,4263216959][0, 1, 0, -4970177, 4263216959] y2=x3+x24970177x+4263216959y^2=x^3+x^2-4970177x+4263216959 3.4.0.a.1, 6.8.0-3.a.1.2, 9.12.0.a.1, 18.24.0-9.a.1.2, 104.2.0.?, \ldots
11466.bj1 11466.bj 2327213 2 \cdot 3^{2} \cdot 7^{2} \cdot 13 00 trivial\mathsf{trivial} 11 [1,1,1,202649,35062023][1, -1, 1, -202649, -35062023] y2+xy+y=x3x2202649x35062023y^2+xy+y=x^3-x^2-202649x-35062023 3.4.0.a.1, 9.12.0.a.1, 21.8.0-3.a.1.1, 63.24.0-9.a.1.1, 104.2.0.?, \ldots
13754.e1 13754.e 213232 2 \cdot 13 \cdot 23^{2} 11 trivial\mathsf{trivial} 3.3637783873.363778387 [1,0,1,243087,46110402][1, 0, 1, -243087, 46110402] y2+xy+y=x3243087x+46110402y^2+xy+y=x^3-243087x+46110402 3.4.0.a.1, 9.12.0.a.1, 69.8.0-3.a.1.1, 104.2.0.?, 117.36.0.?, \ldots
16562.bd1 16562.bd 272132 2 \cdot 7^{2} \cdot 13^{2} 11 trivial\mathsf{trivial} 0.3116292970.311629297 [1,1,1,3805292,2855546637][1, 1, 1, -3805292, 2855546637] y2+xy+y=x3+x23805292x+2855546637y^2+xy+y=x^3+x^2-3805292x+2855546637 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 168.8.0.?, \ldots
20800.bd1 20800.bd 265213 2^{6} \cdot 5^{2} \cdot 13 11 trivial\mathsf{trivial} 2.0103703502.010370350 [0,1,0,735233,242898337][0, -1, 0, -735233, 242898337] y2=x3x2735233x+242898337y^2=x^3-x^2-735233x+242898337 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 120.8.0.?, \ldots
20800.dc1 20800.dc 265213 2^{6} \cdot 5^{2} \cdot 13 00 trivial\mathsf{trivial} 11 [0,1,0,735233,242898337][0, 1, 0, -735233, -242898337] y2=x3+x2735233x242898337y^2=x^3+x^2-735233x-242898337 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 120.8.0.?, \ldots
21866.h1 21866.h 213292 2 \cdot 13 \cdot 29^{2} 11 trivial\mathsf{trivial} 2.2369704592.236970459 [1,1,1,386457,92630873][1, 1, 1, -386457, -92630873] y2+xy+y=x3+x2386457x92630873y^2+xy+y=x^3+x^2-386457x-92630873 3.4.0.a.1, 9.12.0.a.1, 87.8.0.?, 104.2.0.?, 117.36.0.?, \ldots
24336.h1 24336.h 2432132 2^{4} \cdot 3^{2} \cdot 13^{2} 11 trivial\mathsf{trivial} 9.6182194359.618219435 [0,0,0,11182899,14393948686][0, 0, 0, -11182899, -14393948686] y2=x311182899x14393948686y^2=x^3-11182899x-14393948686 3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.6, 72.24.0.?, 104.2.0.?, \ldots
24986.b1 24986.b 213312 2 \cdot 13 \cdot 31^{2} 22 trivial\mathsf{trivial} 1.5122517881.512251788 [1,1,0,441599,112767301][1, 1, 0, -441599, 112767301] y2+xy=x3+x2441599x+112767301y^2+xy=x^3+x^2-441599x+112767301 3.4.0.a.1, 9.12.0.a.1, 93.8.0.?, 104.2.0.?, 117.36.0.?, \ldots
25168.g1 25168.g 2411213 2^{4} \cdot 11^{2} \cdot 13 11 trivial\mathsf{trivial} 8.3236044048.323604404 [0,1,0,889632,322674944][0, -1, 0, -889632, -322674944] y2=x3x2889632x322674944y^2=x^3-x^2-889632x-322674944 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 132.8.0.?, \ldots
28314.bb1 28314.bb 23211213 2 \cdot 3^{2} \cdot 11^{2} \cdot 13 11 trivial\mathsf{trivial} 28.7331591928.73315919 [1,1,0,500418,136128492][1, -1, 0, -500418, -136128492] y2+xy=x3x2500418x136128492y^2+xy=x^3-x^2-500418x-136128492 3.4.0.a.1, 9.12.0.a.1, 33.8.0-3.a.1.2, 99.24.0.?, 104.2.0.?, \ldots
31850.cl1 31850.cl 2527213 2 \cdot 5^{2} \cdot 7^{2} \cdot 13 00 trivial\mathsf{trivial} 11 [1,0,0,562913,162511817][1, 0, 0, -562913, 162511817] y2+xy=x3562913x+162511817y^2+xy=x^3-562913x+162511817 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 105.8.0.?, 117.36.0.?, \ldots
35594.e1 35594.e 213372 2 \cdot 13 \cdot 37^{2} 00 trivial\mathsf{trivial} 11 [1,0,0,629084,192101104][1, 0, 0, -629084, -192101104] y2+xy=x3629084x192101104y^2+xy=x^3-629084x-192101104 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 111.8.0.?, 117.36.0.?, \ldots
40768.ba1 40768.ba 267213 2^{6} \cdot 7^{2} \cdot 13 00 trivial\mathsf{trivial} 11 [0,1,0,1441057,665360191][0, -1, 0, -1441057, -665360191] y2=x3x21441057x665360191y^2=x^3-x^2-1441057x-665360191 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 168.8.0.?, \ldots
40768.cn1 40768.cn 267213 2^{6} \cdot 7^{2} \cdot 13 11 trivial\mathsf{trivial} 2.2843976262.284397626 [0,1,0,1441057,665360191][0, 1, 0, -1441057, 665360191] y2=x3+x21441057x+665360191y^2=x^3+x^2-1441057x+665360191 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 168.8.0.?, \ldots
40898.t1 40898.t 2112132 2 \cdot 11^{2} \cdot 13^{2} 00 trivial\mathsf{trivial} 11 [1,0,1,9396742,11086222552][1, 0, 1, -9396742, 11086222552] y2+xy+y=x39396742x+11086222552y^2+xy+y=x^3-9396742x+11086222552 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 264.8.0.?, \ldots
43706.f1 43706.f 213412 2 \cdot 13 \cdot 41^{2} 11 trivial\mathsf{trivial} 8.5285221248.528522124 [1,1,0,772454,261632876][1, 1, 0, -772454, -261632876] y2+xy=x3+x2772454x261632876y^2+xy=x^3+x^2-772454x-261632876 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 123.8.0.?, \ldots
46800.cj1 46800.cj 24325213 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 11 trivial\mathsf{trivial} 23.0258508223.02585082 [0,0,0,1654275,818954750][0, 0, 0, -1654275, -818954750] y2=x31654275x818954750y^2=x^3-1654275x-818954750 3.4.0.a.1, 9.12.0.a.1, 60.8.0-3.a.1.2, 104.2.0.?, 117.36.0.?, \ldots
48074.d1 48074.d 213432 2 \cdot 13 \cdot 43^{2} 00 trivial\mathsf{trivial} 11 [1,1,1,849654,301093363][1, 1, 1, -849654, 301093363] y2+xy+y=x3+x2849654x+301093363y^2+xy+y=x^3+x^2-849654x+301093363 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 129.8.0.?, \ldots
57434.c1 57434.c 213472 2 \cdot 13 \cdot 47^{2} 00 trivial\mathsf{trivial} 11 [1,0,1,1015082,393555868][1, 0, 1, -1015082, 393555868] y2+xy+y=x31015082x+393555868y^2+xy+y=x^3-1015082x+393555868 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 141.8.0.?, \ldots
60112.r1 60112.r 2413172 2^{4} \cdot 13 \cdot 17^{2} 11 trivial\mathsf{trivial} 5.8046790385.804679038 [0,1,0,2124824,1191447188][0, 1, 0, -2124824, 1191447188] y2=x3+x22124824x+1191447188y^2=x^3+x^2-2124824x+1191447188 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 204.8.0.?, \ldots
67600.co1 67600.co 2452132 2^{4} \cdot 5^{2} \cdot 13^{2} 00 trivial\mathsf{trivial} 11 [0,1,0,31063608,66628296788][0, 1, 0, -31063608, 66628296788] y2=x3+x231063608x+66628296788y^2=x^3+x^2-31063608x+66628296788 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 120.8.0.?, \ldots
67626.w1 67626.w 23213172 2 \cdot 3^{2} \cdot 13 \cdot 17^{2} 00 trivial\mathsf{trivial} 11 [1,1,1,1195214,503239389][1, -1, 1, -1195214, 503239389] y2+xy+y=x3x21195214x+503239389y^2+xy+y=x^3-x^2-1195214x+503239389 3.4.0.a.1, 9.12.0.a.1, 51.8.0-3.a.1.2, 104.2.0.?, 117.36.0.?, \ldots
73034.k1 73034.k 213532 2 \cdot 13 \cdot 53^{2} 11 trivial\mathsf{trivial} 8.5381956718.538195671 [1,1,1,1290794,564998601][1, 1, 1, -1290794, -564998601] y2+xy+y=x3+x21290794x564998601y^2+xy+y=x^3+x^2-1290794x-564998601 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 159.8.0.?, \ldots
75088.w1 75088.w 2413192 2^{4} \cdot 13 \cdot 19^{2} 11 trivial\mathsf{trivial} 15.8047364115.80473641 [0,1,0,2654192,1665243436][0, 1, 0, -2654192, -1665243436] y2=x3+x22654192x1665243436y^2=x^3+x^2-2654192x-1665243436 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 228.8.0.?, \ldots
76050.en1 76050.en 23252132 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} 11 trivial\mathsf{trivial} 1.1847449231.184744923 [1,1,1,17473280,28117549347][1, -1, 1, -17473280, 28117549347] y2+xy+y=x3x217473280x+28117549347y^2+xy+y=x^3-x^2-17473280x+28117549347 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 120.8.0.?, \ldots
78650.k1 78650.k 25211213 2 \cdot 5^{2} \cdot 11^{2} \cdot 13 11 trivial\mathsf{trivial} 2.7513684182.751368418 [1,1,0,1390050,630224500][1, 1, 0, -1390050, 630224500] y2+xy=x3+x21390050x+630224500y^2+xy=x^3+x^2-1390050x+630224500 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 165.8.0.?, \ldots
84474.ba1 84474.ba 23213192 2 \cdot 3^{2} \cdot 13 \cdot 19^{2} 11 trivial\mathsf{trivial} 39.0257264339.02572643 [1,1,0,1492983,701778083][1, -1, 0, -1492983, -701778083] y2+xy=x3x21492983x701778083y^2+xy=x^3-x^2-1492983x-701778083 3.4.0.a.1, 9.12.0.a.1, 57.8.0-3.a.1.1, 104.2.0.?, 117.36.0.?, \ldots
90506.f1 90506.f 213592 2 \cdot 13 \cdot 59^{2} 11 trivial\mathsf{trivial} 0.8017786430.801778643 [1,0,0,1599592,778552384][1, 0, 0, -1599592, 778552384] y2+xy=x31599592x+778552384y^2+xy=x^3-1599592x+778552384 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 177.8.0.?, \ldots
Next   displayed columns for results