Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
1098.d1 |
1098a1 |
1098.d |
1098a |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 61 \) |
\( - 2 \cdot 3^{9} \cdot 61 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1464$ |
$2$ |
$0$ |
$0.409944981$ |
$1$ |
|
$4$ |
$336$ |
$-0.023153$ |
$-1860867/122$ |
$0.79539$ |
$3.48958$ |
$[1, -1, 0, -69, 251]$ |
\(y^2+xy=x^3-x^2-69x+251\) |
1464.2.0.? |
$[(1, 13)]$ |
1098.j1 |
1098g1 |
1098.j |
1098g |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 61 \) |
\( - 2 \cdot 3^{3} \cdot 61 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1464$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$112$ |
$-0.572459$ |
$-1860867/122$ |
$0.79539$ |
$2.54808$ |
$[1, -1, 1, -8, -7]$ |
\(y^2+xy+y=x^3-x^2-8x-7\) |
1464.2.0.? |
$[]$ |
8784.d1 |
8784j1 |
8784.d |
8784j |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 61 \) |
\( - 2^{13} \cdot 3^{3} \cdot 61 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1464$ |
$2$ |
$0$ |
$0.285716114$ |
$1$ |
|
$18$ |
$2688$ |
$0.120688$ |
$-1860867/122$ |
$0.79539$ |
$2.88056$ |
$[0, 0, 0, -123, 554]$ |
\(y^2=x^3-123x+554\) |
1464.2.0.? |
$[(5, 8), (7, 6)]$ |
8784.p1 |
8784i1 |
8784.p |
8784i |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 61 \) |
\( - 2^{13} \cdot 3^{9} \cdot 61 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1464$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$8064$ |
$0.669994$ |
$-1860867/122$ |
$0.79539$ |
$3.60646$ |
$[0, 0, 0, -1107, -14958]$ |
\(y^2=x^3-1107x-14958\) |
1464.2.0.? |
$[]$ |
27450.e1 |
27450c1 |
27450.e |
27450c |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 61 \) |
\( - 2 \cdot 3^{3} \cdot 5^{6} \cdot 61 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1464$ |
$2$ |
$0$ |
$2.879692865$ |
$1$ |
|
$2$ |
$15680$ |
$0.232260$ |
$-1860867/122$ |
$0.79539$ |
$2.69041$ |
$[1, -1, 0, -192, -1034]$ |
\(y^2+xy=x^3-x^2-192x-1034\) |
1464.2.0.? |
$[(23, 68)]$ |
27450.be1 |
27450bf1 |
27450.be |
27450bf |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 61 \) |
\( - 2 \cdot 3^{9} \cdot 5^{6} \cdot 61 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1464$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$47040$ |
$0.781566$ |
$-1860867/122$ |
$0.79539$ |
$3.33538$ |
$[1, -1, 1, -1730, 29647]$ |
\(y^2+xy+y=x^3-x^2-1730x+29647\) |
1464.2.0.? |
$[]$ |
35136.ba1 |
35136bo1 |
35136.ba |
35136bo |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 61 \) |
\( - 2^{19} \cdot 3^{9} \cdot 61 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1464$ |
$2$ |
$0$ |
$2.931101254$ |
$1$ |
|
$2$ |
$64512$ |
$1.016567$ |
$-1860867/122$ |
$0.79539$ |
$3.52614$ |
$[0, 0, 0, -4428, -119664]$ |
\(y^2=x^3-4428x-119664\) |
1464.2.0.? |
$[(156, 1728)]$ |
35136.bf1 |
35136h1 |
35136.bf |
35136h |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 61 \) |
\( - 2^{19} \cdot 3^{9} \cdot 61 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1464$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$64512$ |
$1.016567$ |
$-1860867/122$ |
$0.79539$ |
$3.52614$ |
$[0, 0, 0, -4428, 119664]$ |
\(y^2=x^3-4428x+119664\) |
1464.2.0.? |
$[]$ |
35136.bq1 |
35136bn1 |
35136.bq |
35136bn |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 61 \) |
\( - 2^{19} \cdot 3^{3} \cdot 61 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1464$ |
$2$ |
$0$ |
$0.483191295$ |
$1$ |
|
$4$ |
$21504$ |
$0.467262$ |
$-1860867/122$ |
$0.79539$ |
$2.89638$ |
$[0, 0, 0, -492, 4432]$ |
\(y^2=x^3-492x+4432\) |
1464.2.0.? |
$[(26, 96)]$ |
35136.cf1 |
35136g1 |
35136.cf |
35136g |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 61 \) |
\( - 2^{19} \cdot 3^{3} \cdot 61 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1464$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$21504$ |
$0.467262$ |
$-1860867/122$ |
$0.79539$ |
$2.89638$ |
$[0, 0, 0, -492, -4432]$ |
\(y^2=x^3-492x-4432\) |
1464.2.0.? |
$[]$ |
53802.n1 |
53802g1 |
53802.n |
53802g |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 61 \) |
\( - 2 \cdot 3^{9} \cdot 7^{6} \cdot 61 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1464$ |
$2$ |
$0$ |
$3.071454433$ |
$1$ |
|
$2$ |
$96768$ |
$0.949802$ |
$-1860867/122$ |
$0.79539$ |
$3.31466$ |
$[1, -1, 0, -3390, -79318]$ |
\(y^2+xy=x^3-x^2-3390x-79318\) |
1464.2.0.? |
$[(751, 20131)]$ |
53802.cd1 |
53802bm1 |
53802.cd |
53802bm |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 61 \) |
\( - 2 \cdot 3^{3} \cdot 7^{6} \cdot 61 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1464$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$32256$ |
$0.400496$ |
$-1860867/122$ |
$0.79539$ |
$2.70954$ |
$[1, -1, 1, -377, 3063]$ |
\(y^2+xy+y=x^3-x^2-377x+3063\) |
1464.2.0.? |
$[]$ |
66978.d1 |
66978a1 |
66978.d |
66978a |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 61^{2} \) |
\( - 2 \cdot 3^{3} \cdot 61^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1464$ |
$2$ |
$0$ |
$0.420193779$ |
$1$ |
|
$6$ |
$416640$ |
$1.482979$ |
$-1860867/122$ |
$0.79539$ |
$3.82510$ |
$[1, -1, 0, -28605, -1957653]$ |
\(y^2+xy=x^3-x^2-28605x-1957653\) |
1464.2.0.? |
$[(351, 5406)]$ |
66978.n1 |
66978j1 |
66978.n |
66978j |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 61^{2} \) |
\( - 2 \cdot 3^{9} \cdot 61^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1464$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1249920$ |
$2.032284$ |
$-1860867/122$ |
$0.79539$ |
$4.41830$ |
$[1, -1, 1, -257447, 53114077]$ |
\(y^2+xy+y=x^3-x^2-257447x+53114077\) |
1464.2.0.? |
$[]$ |
132858.o1 |
132858cn1 |
132858.o |
132858cn |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 11^{2} \cdot 61 \) |
\( - 2 \cdot 3^{3} \cdot 11^{6} \cdot 61 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1464$ |
$2$ |
$0$ |
$0.811810910$ |
$1$ |
|
$4$ |
$120960$ |
$0.626489$ |
$-1860867/122$ |
$0.79539$ |
$2.73179$ |
$[1, -1, 0, -930, 11754]$ |
\(y^2+xy=x^3-x^2-930x+11754\) |
1464.2.0.? |
$[(25, 48)]$ |
132858.ce1 |
132858bf1 |
132858.ce |
132858bf |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 11^{2} \cdot 61 \) |
\( - 2 \cdot 3^{9} \cdot 11^{6} \cdot 61 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1464$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$362880$ |
$1.175795$ |
$-1860867/122$ |
$0.79539$ |
$3.29055$ |
$[1, -1, 1, -8372, -308987]$ |
\(y^2+xy+y=x^3-x^2-8372x-308987\) |
1464.2.0.? |
$[]$ |
185562.h1 |
185562bm1 |
185562.h |
185562bm |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 13^{2} \cdot 61 \) |
\( - 2 \cdot 3^{3} \cdot 13^{6} \cdot 61 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1464$ |
$2$ |
$0$ |
$2.470128937$ |
$1$ |
|
$0$ |
$215040$ |
$0.710015$ |
$-1860867/122$ |
$0.79539$ |
$2.73918$ |
$[1, -1, 0, -1299, -18693]$ |
\(y^2+xy=x^3-x^2-1299x-18693\) |
1464.2.0.? |
$[(183/2, 831/2)]$ |
185562.bc1 |
185562v1 |
185562.bc |
185562v |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 13^{2} \cdot 61 \) |
\( - 2 \cdot 3^{9} \cdot 13^{6} \cdot 61 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1464$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$645120$ |
$1.259321$ |
$-1860867/122$ |
$0.79539$ |
$3.28255$ |
$[1, -1, 1, -11693, 516403]$ |
\(y^2+xy+y=x^3-x^2-11693x+516403\) |
1464.2.0.? |
$[]$ |
219600.fh1 |
219600dq1 |
219600.fh |
219600dq |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 61 \) |
\( - 2^{13} \cdot 3^{3} \cdot 5^{6} \cdot 61 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1464$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$376320$ |
$0.925407$ |
$-1860867/122$ |
$0.79539$ |
$2.91182$ |
$[0, 0, 0, -3075, 69250]$ |
\(y^2=x^3-3075x+69250\) |
1464.2.0.? |
$[]$ |
219600.fw1 |
219600dr1 |
219600.fw |
219600dr |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 61 \) |
\( - 2^{13} \cdot 3^{9} \cdot 5^{6} \cdot 61 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1464$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$1128960$ |
$1.474712$ |
$-1860867/122$ |
$0.79539$ |
$3.44775$ |
$[0, 0, 0, -27675, -1869750]$ |
\(y^2=x^3-27675x-1869750\) |
1464.2.0.? |
$[]$ |
317322.f1 |
317322f1 |
317322.f |
317322f |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 17^{2} \cdot 61 \) |
\( - 2 \cdot 3^{9} \cdot 17^{6} \cdot 61 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1464$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1693440$ |
$1.393454$ |
$-1860867/122$ |
$0.79539$ |
$3.27058$ |
$[1, -1, 0, -19995, 1153259]$ |
\(y^2+xy=x^3-x^2-19995x+1153259\) |
1464.2.0.? |
$[]$ |
317322.bh1 |
317322bh1 |
317322.bh |
317322bh |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 17^{2} \cdot 61 \) |
\( - 2 \cdot 3^{3} \cdot 17^{6} \cdot 61 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1464$ |
$2$ |
$0$ |
$6.678817004$ |
$1$ |
|
$0$ |
$564480$ |
$0.844148$ |
$-1860867/122$ |
$0.79539$ |
$2.75023$ |
$[1, -1, 1, -2222, -41973]$ |
\(y^2+xy+y=x^3-x^2-2222x-41973\) |
1464.2.0.? |
$[(941/4, 8835/4)]$ |
396378.k1 |
396378k1 |
396378.k |
396378k |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 19^{2} \cdot 61 \) |
\( - 2 \cdot 3^{3} \cdot 19^{6} \cdot 61 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1464$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$733824$ |
$0.899760$ |
$-1860867/122$ |
$0.79539$ |
$2.75454$ |
$[1, -1, 0, -2775, 60067]$ |
\(y^2+xy=x^3-x^2-2775x+60067\) |
1464.2.0.? |
$[]$ |
396378.bu1 |
396378bu1 |
396378.bu |
396378bu |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 19^{2} \cdot 61 \) |
\( - 2 \cdot 3^{9} \cdot 19^{6} \cdot 61 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1464$ |
$2$ |
$0$ |
$21.46269831$ |
$1$ |
|
$0$ |
$2201472$ |
$1.449066$ |
$-1860867/122$ |
$0.79539$ |
$3.26591$ |
$[1, -1, 1, -24977, -1596833]$ |
\(y^2+xy+y=x^3-x^2-24977x-1596833\) |
1464.2.0.? |
$[(206424910759/2042, 93575157970980715/2042)]$ |
430416.cc1 |
430416cc1 |
430416.cc |
430416cc |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 61 \) |
\( - 2^{13} \cdot 3^{9} \cdot 7^{6} \cdot 61 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1464$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2322432$ |
$1.642950$ |
$-1860867/122$ |
$0.79539$ |
$3.42452$ |
$[0, 0, 0, -54243, 5130594]$ |
\(y^2=x^3-54243x+5130594\) |
1464.2.0.? |
$[]$ |
430416.dh1 |
430416dh1 |
430416.dh |
430416dh |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 61 \) |
\( - 2^{13} \cdot 3^{3} \cdot 7^{6} \cdot 61 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1464$ |
$2$ |
$0$ |
$3.871362681$ |
$1$ |
|
$10$ |
$774144$ |
$1.093643$ |
$-1860867/122$ |
$0.79539$ |
$2.91639$ |
$[0, 0, 0, -6027, -190022]$ |
\(y^2=x^3-6027x-190022\) |
1464.2.0.? |
$[(119, 882), (413, 8232)]$ |