Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
1155.b1 |
1155i1 |
1155.b |
1155i |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( - 3^{7} \cdot 5 \cdot 7 \cdot 11 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$2310$ |
$2$ |
$0$ |
$0.077057682$ |
$1$ |
|
$10$ |
$336$ |
$-0.003631$ |
$-222985990144/841995$ |
$0.89082$ |
$3.70638$ |
$[0, 1, 1, -126, 506]$ |
\(y^2+y=x^3+x^2-126x+506\) |
2310.2.0.? |
$[(9, 13)]$ |
3465.t1 |
3465o1 |
3465.t |
3465o |
$1$ |
$1$ |
\( 3^{2} \cdot 5 \cdot 7 \cdot 11 \) |
\( - 3^{13} \cdot 5 \cdot 7 \cdot 11 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2310$ |
$2$ |
$0$ |
$7.925749568$ |
$1$ |
|
$0$ |
$2688$ |
$0.545674$ |
$-222985990144/841995$ |
$0.89082$ |
$4.01554$ |
$[0, 0, 1, -1137, -14805]$ |
\(y^2+y=x^3-1137x-14805\) |
2310.2.0.? |
$[(8225/2, 745835/2)]$ |
5775.z1 |
5775j1 |
5775.z |
5775j |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 7 \cdot 11 \) |
\( - 3^{7} \cdot 5^{7} \cdot 7 \cdot 11 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2310$ |
$2$ |
$0$ |
$2.628473047$ |
$1$ |
|
$0$ |
$8064$ |
$0.801087$ |
$-222985990144/841995$ |
$0.89082$ |
$4.13258$ |
$[0, -1, 1, -3158, 69593]$ |
\(y^2+y=x^3-x^2-3158x+69593\) |
2310.2.0.? |
$[(133/2, 121/2)]$ |
8085.c1 |
8085m1 |
8085.c |
8085m |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 11 \) |
\( - 3^{7} \cdot 5 \cdot 7^{7} \cdot 11 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2310$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$16128$ |
$0.969324$ |
$-222985990144/841995$ |
$0.89082$ |
$4.20241$ |
$[0, -1, 1, -6190, -186012]$ |
\(y^2+y=x^3-x^2-6190x-186012\) |
2310.2.0.? |
$[]$ |
12705.p1 |
12705l1 |
12705.p |
12705l |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 7 \cdot 11^{2} \) |
\( - 3^{7} \cdot 5 \cdot 7 \cdot 11^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2310$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$40320$ |
$1.195316$ |
$-222985990144/841995$ |
$0.89082$ |
$4.28839$ |
$[0, 1, 1, -15286, -734915]$ |
\(y^2+y=x^3+x^2-15286x-734915\) |
2310.2.0.? |
$[]$ |
17325.h1 |
17325bc1 |
17325.h |
17325bc |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 11 \) |
\( - 3^{13} \cdot 5^{7} \cdot 7 \cdot 11 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2310$ |
$2$ |
$0$ |
$0.859785637$ |
$1$ |
|
$4$ |
$64512$ |
$1.350393$ |
$-222985990144/841995$ |
$0.89082$ |
$4.34279$ |
$[0, 0, 1, -28425, -1850594]$ |
\(y^2+y=x^3-28425x-1850594\) |
2310.2.0.? |
$[(265, 3037)]$ |
18480.o1 |
18480bs1 |
18480.o |
18480bs |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( - 2^{12} \cdot 3^{7} \cdot 5 \cdot 7 \cdot 11 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2310$ |
$2$ |
$0$ |
$11.16412240$ |
$1$ |
|
$0$ |
$13440$ |
$0.689516$ |
$-222985990144/841995$ |
$0.89082$ |
$3.50703$ |
$[0, -1, 0, -2021, -34419]$ |
\(y^2=x^3-x^2-2021x-34419\) |
2310.2.0.? |
$[(48988/29, 5004691/29)]$ |
24255.bt1 |
24255bf1 |
24255.bt |
24255bf |
$1$ |
$1$ |
\( 3^{2} \cdot 5 \cdot 7^{2} \cdot 11 \) |
\( - 3^{13} \cdot 5 \cdot 7^{7} \cdot 11 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2310$ |
$2$ |
$0$ |
$1.007038700$ |
$1$ |
|
$0$ |
$129024$ |
$1.518629$ |
$-222985990144/841995$ |
$0.89082$ |
$4.39801$ |
$[0, 0, 1, -55713, 5078029]$ |
\(y^2+y=x^3-55713x+5078029\) |
2310.2.0.? |
$[(217/2, 11903/2)]$ |
38115.e1 |
38115bf1 |
38115.e |
38115bf |
$1$ |
$1$ |
\( 3^{2} \cdot 5 \cdot 7 \cdot 11^{2} \) |
\( - 3^{13} \cdot 5 \cdot 7 \cdot 11^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2310$ |
$2$ |
$0$ |
$1.763429614$ |
$1$ |
|
$2$ |
$322560$ |
$1.744623$ |
$-222985990144/841995$ |
$0.89082$ |
$4.46666$ |
$[0, 0, 1, -137577, 19705122]$ |
\(y^2+y=x^3-137577x+19705122\) |
2310.2.0.? |
$[(275, 1633)]$ |
40425.de1 |
40425cq1 |
40425.de |
40425cq |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 7^{2} \cdot 11 \) |
\( - 3^{7} \cdot 5^{7} \cdot 7^{7} \cdot 11 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2310$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$387072$ |
$1.774042$ |
$-222985990144/841995$ |
$0.89082$ |
$4.47516$ |
$[0, 1, 1, -154758, -23560981]$ |
\(y^2+y=x^3+x^2-154758x-23560981\) |
2310.2.0.? |
$[]$ |
55440.ep1 |
55440es1 |
55440.ep |
55440es |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \) |
\( - 2^{12} \cdot 3^{13} \cdot 5 \cdot 7 \cdot 11 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2310$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$107520$ |
$1.238821$ |
$-222985990144/841995$ |
$0.89082$ |
$3.75777$ |
$[0, 0, 0, -18192, 947504]$ |
\(y^2=x^3-18192x+947504\) |
2310.2.0.? |
$[]$ |
63525.a1 |
63525j1 |
63525.a |
63525j |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 7 \cdot 11^{2} \) |
\( - 3^{7} \cdot 5^{7} \cdot 7 \cdot 11^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2310$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$967680$ |
$2.000034$ |
$-222985990144/841995$ |
$0.89082$ |
$4.53748$ |
$[0, -1, 1, -382158, -91100032]$ |
\(y^2+y=x^3-x^2-382158x-91100032\) |
2310.2.0.? |
$[]$ |
73920.cn1 |
73920w1 |
73920.cn |
73920w |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( - 2^{6} \cdot 3^{7} \cdot 5 \cdot 7 \cdot 11 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2310$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$26880$ |
$0.342942$ |
$-222985990144/841995$ |
$0.89082$ |
$2.70239$ |
$[0, -1, 0, -505, 4555]$ |
\(y^2=x^3-x^2-505x+4555\) |
2310.2.0.? |
$[]$ |
73920.ik1 |
73920ih1 |
73920.ik |
73920ih |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( - 2^{6} \cdot 3^{7} \cdot 5 \cdot 7 \cdot 11 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2310$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$26880$ |
$0.342942$ |
$-222985990144/841995$ |
$0.89082$ |
$2.70239$ |
$[0, 1, 0, -505, -4555]$ |
\(y^2=x^3+x^2-505x-4555\) |
2310.2.0.? |
$[]$ |
88935.cg1 |
88935bj1 |
88935.cg |
88935bj |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 11^{2} \) |
\( - 3^{7} \cdot 5 \cdot 7^{7} \cdot 11^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2310$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1935360$ |
$2.168270$ |
$-222985990144/841995$ |
$0.89082$ |
$4.58067$ |
$[0, -1, 1, -749030, 250577711]$ |
\(y^2+y=x^3-x^2-749030x+250577711\) |
2310.2.0.? |
$[]$ |
92400.ez1 |
92400fz1 |
92400.ez |
92400fz |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) |
\( - 2^{12} \cdot 3^{7} \cdot 5^{7} \cdot 7 \cdot 11 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2310$ |
$2$ |
$0$ |
$3.923099875$ |
$1$ |
|
$2$ |
$322560$ |
$1.494234$ |
$-222985990144/841995$ |
$0.89082$ |
$3.85794$ |
$[0, 1, 0, -50533, -4403437]$ |
\(y^2=x^3+x^2-50533x-4403437\) |
2310.2.0.? |
$[(518, 10425)]$ |
121275.c1 |
121275dm1 |
121275.c |
121275dm |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 11 \) |
\( - 3^{13} \cdot 5^{7} \cdot 7^{7} \cdot 11 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2310$ |
$2$ |
$0$ |
$1.550491114$ |
$1$ |
|
$6$ |
$3096576$ |
$2.323349$ |
$-222985990144/841995$ |
$0.89082$ |
$4.61827$ |
$[0, 0, 1, -1392825, 634753656]$ |
\(y^2+y=x^3-1392825x+634753656\) |
2310.2.0.? |
$[(560, 5512)]$ |
129360.go1 |
129360hf1 |
129360.go |
129360hf |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 11 \) |
\( - 2^{12} \cdot 3^{7} \cdot 5 \cdot 7^{7} \cdot 11 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2310$ |
$2$ |
$0$ |
$1.223514532$ |
$1$ |
|
$2$ |
$645120$ |
$1.662472$ |
$-222985990144/841995$ |
$0.89082$ |
$3.91918$ |
$[0, 1, 0, -99045, 12003795]$ |
\(y^2=x^3+x^2-99045x+12003795\) |
2310.2.0.? |
$[(198, 441)]$ |
190575.em1 |
190575ew1 |
190575.em |
190575ew |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 11^{2} \) |
\( - 3^{13} \cdot 5^{7} \cdot 7 \cdot 11^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2310$ |
$2$ |
$0$ |
$2.036248289$ |
$1$ |
|
$0$ |
$7741440$ |
$2.549343$ |
$-222985990144/841995$ |
$0.89082$ |
$4.66964$ |
$[0, 0, 1, -3439425, 2463140281]$ |
\(y^2+y=x^3-3439425x+2463140281\) |
2310.2.0.? |
$[(20185/4, 735043/4)]$ |
195195.cf1 |
195195cc1 |
195195.cf |
195195cc |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13^{2} \) |
\( - 3^{7} \cdot 5 \cdot 7 \cdot 11 \cdot 13^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2310$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$774144$ |
$1.278843$ |
$-222985990144/841995$ |
$0.89082$ |
$3.40892$ |
$[0, 1, 1, -21350, 1197551]$ |
\(y^2+y=x^3+x^2-21350x+1197551\) |
2310.2.0.? |
$[]$ |
203280.v1 |
203280ef1 |
203280.v |
203280ef |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) |
\( - 2^{12} \cdot 3^{7} \cdot 5 \cdot 7 \cdot 11^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2310$ |
$2$ |
$0$ |
$5.156319747$ |
$1$ |
|
$2$ |
$1612800$ |
$1.888464$ |
$-222985990144/841995$ |
$0.89082$ |
$3.99613$ |
$[0, -1, 0, -244581, 46789965]$ |
\(y^2=x^3-x^2-244581x+46789965\) |
2310.2.0.? |
$[(1940, 82885)]$ |
221760.ct1 |
221760lq1 |
221760.ct |
221760lq |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \) |
\( - 2^{6} \cdot 3^{13} \cdot 5 \cdot 7 \cdot 11 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2310$ |
$2$ |
$0$ |
$6.552523247$ |
$1$ |
|
$0$ |
$215040$ |
$0.892248$ |
$-222985990144/841995$ |
$0.89082$ |
$2.99670$ |
$[0, 0, 0, -4548, -118438]$ |
\(y^2=x^3-4548x-118438\) |
2310.2.0.? |
$[(9667/11, 223317/11)]$ |
221760.eh1 |
221760eb1 |
221760.eh |
221760eb |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \) |
\( - 2^{6} \cdot 3^{13} \cdot 5 \cdot 7 \cdot 11 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2310$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$215040$ |
$0.892248$ |
$-222985990144/841995$ |
$0.89082$ |
$2.99670$ |
$[0, 0, 0, -4548, 118438]$ |
\(y^2=x^3-4548x+118438\) |
2310.2.0.? |
$[]$ |
266805.c1 |
266805c1 |
266805.c |
266805c |
$1$ |
$1$ |
\( 3^{2} \cdot 5 \cdot 7^{2} \cdot 11^{2} \) |
\( - 3^{13} \cdot 5 \cdot 7^{7} \cdot 11^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2310$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$15482880$ |
$2.717579$ |
$-222985990144/841995$ |
$0.89082$ |
$4.70547$ |
$[0, 0, 1, -6741273, -6758856932]$ |
\(y^2+y=x^3-6741273x-6758856932\) |
2310.2.0.? |
$[]$ |
277200.fr1 |
277200fr1 |
277200.fr |
277200fr |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 11 \) |
\( - 2^{12} \cdot 3^{13} \cdot 5^{7} \cdot 7 \cdot 11 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2310$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2580480$ |
$2.043541$ |
$-222985990144/841995$ |
$0.89082$ |
$4.04572$ |
$[0, 0, 0, -454800, 118438000]$ |
\(y^2=x^3-454800x+118438000\) |
2310.2.0.? |
$[]$ |
333795.c1 |
333795c1 |
333795.c |
333795c |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \cdot 17^{2} \) |
\( - 3^{7} \cdot 5 \cdot 7 \cdot 11 \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2310$ |
$2$ |
$0$ |
$4.097388173$ |
$1$ |
|
$2$ |
$1736448$ |
$1.412975$ |
$-222985990144/841995$ |
$0.89082$ |
$3.39167$ |
$[0, -1, 1, -36510, 2706086]$ |
\(y^2+y=x^3-x^2-36510x+2706086\) |
2310.2.0.? |
$[(107, 114)]$ |
369600.dz1 |
369600dz1 |
369600.dz |
369600dz |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) |
\( - 2^{6} \cdot 3^{7} \cdot 5^{7} \cdot 7 \cdot 11 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2310$ |
$2$ |
$0$ |
$5.684160084$ |
$1$ |
|
$0$ |
$645120$ |
$1.147661$ |
$-222985990144/841995$ |
$0.89082$ |
$3.11637$ |
$[0, -1, 0, -12633, -544113]$ |
\(y^2=x^3-x^2-12633x-544113\) |
2310.2.0.? |
$[(1618/3, 46475/3)]$ |
369600.rt1 |
369600rt1 |
369600.rt |
369600rt |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) |
\( - 2^{6} \cdot 3^{7} \cdot 5^{7} \cdot 7 \cdot 11 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2310$ |
$2$ |
$0$ |
$0.390243667$ |
$1$ |
|
$4$ |
$645120$ |
$1.147661$ |
$-222985990144/841995$ |
$0.89082$ |
$3.11637$ |
$[0, 1, 0, -12633, 544113]$ |
\(y^2=x^3+x^2-12633x+544113\) |
2310.2.0.? |
$[(48, 225)]$ |
388080.gl1 |
388080gl1 |
388080.gl |
388080gl |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 11 \) |
\( - 2^{12} \cdot 3^{13} \cdot 5 \cdot 7^{7} \cdot 11 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2310$ |
$2$ |
$0$ |
$21.90496945$ |
$1$ |
|
$0$ |
$5160960$ |
$2.211777$ |
$-222985990144/841995$ |
$0.89082$ |
$4.09682$ |
$[0, 0, 0, -891408, -324993872]$ |
\(y^2=x^3-891408x-324993872\) |
2310.2.0.? |
$[(65714404049/2243, 16800472310298327/2243)]$ |
416955.cj1 |
416955cj1 |
416955.cj |
416955cj |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19^{2} \) |
\( - 3^{7} \cdot 5 \cdot 7 \cdot 11 \cdot 19^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2310$ |
$2$ |
$0$ |
$80.30554841$ |
$1$ |
|
$0$ |
$2122848$ |
$1.468588$ |
$-222985990144/841995$ |
$0.89082$ |
$3.38493$ |
$[0, -1, 1, -45606, -3745753]$ |
\(y^2+y=x^3-x^2-45606x-3745753\) |
2310.2.0.? |
$[(54386865621812374761251091782473493/13007674707650006, 8438019324450920488959212560130553110484519192349081/13007674707650006)]$ |
444675.bd1 |
444675bd1 |
444675.bd |
444675bd |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 7^{2} \cdot 11^{2} \) |
\( - 3^{7} \cdot 5^{7} \cdot 7^{7} \cdot 11^{7} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2310$ |
$2$ |
$0$ |
$0.157347506$ |
$1$ |
|
$32$ |
$46448640$ |
$2.972992$ |
$-222985990144/841995$ |
$0.89082$ |
$4.75631$ |
$[0, 1, 1, -18725758, 31284762394]$ |
\(y^2+y=x^3+x^2-18725758x+31284762394\) |
2310.2.0.? |
$[(2207, 26680), (4748, 222337)]$ |