Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
103428.d1 |
103428e1 |
103428.d |
103428e |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 13^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{9} \cdot 13^{2} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$0.327397469$ |
$1$ |
|
$6$ |
$181440$ |
$1.143135$ |
$-23003136/4913$ |
$1.11492$ |
$3.27609$ |
$[0, 0, 0, -5616, 189540]$ |
\(y^2=x^3-5616x+189540\) |
102.2.0.? |
$[(108, 918)]$ |
103428.l1 |
103428b1 |
103428.l |
103428b |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 13^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{3} \cdot 13^{8} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$786240$ |
$1.876305$ |
$-23003136/4913$ |
$1.11492$ |
$4.03805$ |
$[0, 0, 0, -105456, -15422940]$ |
\(y^2=x^3-105456x-15422940\) |
102.2.0.? |
$[]$ |
103428.v1 |
103428a1 |
103428.v |
103428a |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 13^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{3} \cdot 13^{2} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$60480$ |
$0.593830$ |
$-23003136/4913$ |
$1.11492$ |
$2.70522$ |
$[0, 0, 0, -624, -7020]$ |
\(y^2=x^3-624x-7020\) |
102.2.0.? |
$[]$ |
103428.ba1 |
103428d1 |
103428.ba |
103428d |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 13^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{9} \cdot 13^{8} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$8.343105067$ |
$1$ |
|
$0$ |
$2358720$ |
$2.425610$ |
$-23003136/4913$ |
$1.11492$ |
$4.60892$ |
$[0, 0, 0, -949104, 416419380]$ |
\(y^2=x^3-949104x+416419380\) |
102.2.0.? |
$[(62397/13, 23695875/13)]$ |
413712.t1 |
413712t1 |
413712.t |
413712t |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 13^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{3} \cdot 13^{8} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3144960$ |
$1.876305$ |
$-23003136/4913$ |
$1.11492$ |
$3.60521$ |
$[0, 0, 0, -105456, 15422940]$ |
\(y^2=x^3-105456x+15422940\) |
102.2.0.? |
$[]$ |
413712.bo1 |
413712bo1 |
413712.bo |
413712bo |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 13^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{9} \cdot 13^{2} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$2.520665022$ |
$1$ |
|
$2$ |
$725760$ |
$1.143135$ |
$-23003136/4913$ |
$1.11492$ |
$2.92493$ |
$[0, 0, 0, -5616, -189540]$ |
\(y^2=x^3-5616x-189540\) |
102.2.0.? |
$[(810, 22950)]$ |
413712.dv1 |
413712dv1 |
413712.dv |
413712dv |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 13^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{9} \cdot 13^{8} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$7.695502208$ |
$1$ |
|
$0$ |
$9434880$ |
$2.425610$ |
$-23003136/4913$ |
$1.11492$ |
$4.11489$ |
$[0, 0, 0, -949104, -416419380]$ |
\(y^2=x^3-949104x-416419380\) |
102.2.0.? |
$[(136566/5, 49593114/5)]$ |
413712.ek1 |
413712ek1 |
413712.ek |
413712ek |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 13^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{3} \cdot 13^{2} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$241920$ |
$0.593830$ |
$-23003136/4913$ |
$1.11492$ |
$2.41524$ |
$[0, 0, 0, -624, 7020]$ |
\(y^2=x^3-624x+7020\) |
102.2.0.? |
$[]$ |