Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
361.a1 |
361a2 |
361.a |
361a |
$2$ |
$19$ |
\( 19^{2} \) |
\( - 19^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$19$ |
19.360.7.18 |
19B.1.13 |
|
|
|
$3.444541806$ |
$1$ |
|
$2$ |
$380$ |
$1.122070$ |
$-884736$ |
$1.31757$ |
$6.82557$ |
$[0, 0, 1, -13718, -619025]$ |
\(y^2+y=x^3-13718x-619025\) |
|
$[(2527, 126891)]$ |
361.a2 |
361a1 |
361.a |
361a |
$2$ |
$19$ |
\( 19^{2} \) |
\( - 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$19$ |
19.360.7.9 |
19B.1.6 |
|
|
|
$0.181291674$ |
$1$ |
|
$4$ |
$20$ |
$-0.350149$ |
$-884736$ |
$1.31757$ |
$3.82557$ |
$[0, 0, 1, -38, 90]$ |
\(y^2+y=x^3-38x+90\) |
|
$[(0, 9)]$ |
3249.e1 |
3249a2 |
3249.e |
3249a |
$2$ |
$19$ |
\( 3^{2} \cdot 19^{2} \) |
\( - 3^{6} \cdot 19^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$12160$ |
$1.671377$ |
$-884736$ |
$1.31757$ |
$5.78605$ |
$[0, 0, 1, -123462, 16713668]$ |
\(y^2+y=x^3-123462x+16713668\) |
|
$[]$ |
3249.e2 |
3249a1 |
3249.e |
3249a |
$2$ |
$19$ |
\( 3^{2} \cdot 19^{2} \) |
\( - 3^{6} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$640$ |
$0.199157$ |
$-884736$ |
$1.31757$ |
$3.60124$ |
$[0, 0, 1, -342, -2437]$ |
\(y^2+y=x^3-342x-2437\) |
|
$[]$ |
5776.i1 |
5776g2 |
5776.i |
5776g |
$2$ |
$19$ |
\( 2^{4} \cdot 19^{2} \) |
\( - 2^{12} \cdot 19^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$27360$ |
$1.815218$ |
$-884736$ |
$1.31757$ |
$5.60098$ |
$[0, 0, 0, -219488, 39617584]$ |
\(y^2=x^3-219488x+39617584\) |
|
$[]$ |
5776.i2 |
5776g1 |
5776.i |
5776g |
$2$ |
$19$ |
\( 2^{4} \cdot 19^{2} \) |
\( - 2^{12} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$1440$ |
$0.342999$ |
$-884736$ |
$1.31757$ |
$3.56130$ |
$[0, 0, 0, -608, -5776]$ |
\(y^2=x^3-608x-5776\) |
|
$[]$ |
9025.f1 |
9025a2 |
9025.f |
9025a |
$2$ |
$19$ |
\( 5^{2} \cdot 19^{2} \) |
\( - 5^{6} \cdot 19^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$13.07039459$ |
$1$ |
|
$0$ |
$53200$ |
$1.926790$ |
$-884736$ |
$1.31757$ |
$5.47353$ |
$[0, 0, 1, -342950, -77378094]$ |
\(y^2+y=x^3-342950x-77378094\) |
|
$[(26975364/191, 59664634090/191)]$ |
9025.f2 |
9025a1 |
9025.f |
9025a |
$2$ |
$19$ |
\( 5^{2} \cdot 19^{2} \) |
\( - 5^{6} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$0.687915504$ |
$1$ |
|
$4$ |
$2800$ |
$0.454570$ |
$-884736$ |
$1.31757$ |
$3.53380$ |
$[0, 0, 1, -950, 11281]$ |
\(y^2+y=x^3-950x+11281\) |
|
$[(19, 9)]$ |
17689.g1 |
17689d2 |
17689.g |
17689d |
$2$ |
$19$ |
\( 7^{2} \cdot 19^{2} \) |
\( - 7^{6} \cdot 19^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$125400$ |
$2.095024$ |
$-884736$ |
$1.31757$ |
$5.30334$ |
$[0, 0, 1, -672182, 212325489]$ |
\(y^2+y=x^3-672182x+212325489\) |
|
$[]$ |
17689.g2 |
17689d1 |
17689.g |
17689d |
$2$ |
$19$ |
\( 7^{2} \cdot 19^{2} \) |
\( - 7^{6} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$6600$ |
$0.622807$ |
$-884736$ |
$1.31757$ |
$3.49707$ |
$[0, 0, 1, -1862, -30956]$ |
\(y^2+y=x^3-1862x-30956\) |
|
$[]$ |
23104.z1 |
23104x2 |
23104.z |
23104x |
$2$ |
$19$ |
\( 2^{6} \cdot 19^{2} \) |
\( - 2^{6} \cdot 19^{9} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$5.325900492$ |
$1$ |
|
$4$ |
$54720$ |
$1.468645$ |
$-884736$ |
$1.31757$ |
$4.41430$ |
$[0, 0, 0, -54872, 4952198]$ |
\(y^2=x^3-54872x+4952198\) |
|
$[(361/2, 6859/2), (3971/5, 61731/5)]$ |
23104.z2 |
23104x1 |
23104.z |
23104x |
$2$ |
$19$ |
\( 2^{6} \cdot 19^{2} \) |
\( - 2^{6} \cdot 19^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$5.325900492$ |
$1$ |
|
$6$ |
$2880$ |
$-0.003575$ |
$-884736$ |
$1.31757$ |
$2.65603$ |
$[0, 0, 0, -152, -722]$ |
\(y^2=x^3-152x-722\) |
|
$[(19, 57), (57/2, 19/2)]$ |
23104.bc1 |
23104a2 |
23104.bc |
23104a |
$2$ |
$19$ |
\( 2^{6} \cdot 19^{2} \) |
\( - 2^{6} \cdot 19^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$19.94010943$ |
$1$ |
|
$0$ |
$54720$ |
$1.468645$ |
$-884736$ |
$1.31757$ |
$4.41430$ |
$[0, 0, 0, -54872, -4952198]$ |
\(y^2=x^3-54872x-4952198\) |
|
$[(413167167/569, 8245366935161/569)]$ |
23104.bc2 |
23104a1 |
23104.bc |
23104a |
$2$ |
$19$ |
\( 2^{6} \cdot 19^{2} \) |
\( - 2^{6} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$1.049479443$ |
$1$ |
|
$2$ |
$2880$ |
$-0.003575$ |
$-884736$ |
$1.31757$ |
$2.65603$ |
$[0, 0, 0, -152, 722]$ |
\(y^2=x^3-152x+722\) |
|
$[(7, 1)]$ |
43681.g1 |
43681h2 |
43681.g |
43681h |
$2$ |
$19$ |
\( 11^{2} \cdot 19^{2} \) |
\( - 11^{6} \cdot 19^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$452200$ |
$2.321018$ |
$-884736$ |
$1.31757$ |
$5.10847$ |
$[0, 0, 1, -1659878, 823921942]$ |
\(y^2+y=x^3-1659878x+823921942\) |
|
$[]$ |
43681.g2 |
43681h1 |
43681.g |
43681h |
$2$ |
$19$ |
\( 11^{2} \cdot 19^{2} \) |
\( - 11^{6} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$23800$ |
$0.848799$ |
$-884736$ |
$1.31757$ |
$3.45501$ |
$[0, 0, 1, -4598, -120123]$ |
\(y^2+y=x^3-4598x-120123\) |
|
$[]$ |
51984.bu1 |
51984cc2 |
51984.bu |
51984cc |
$2$ |
$19$ |
\( 2^{4} \cdot 3^{2} \cdot 19^{2} \) |
\( - 2^{12} \cdot 3^{6} \cdot 19^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$20.01261082$ |
$1$ |
|
$0$ |
$875520$ |
$2.364525$ |
$-884736$ |
$1.31757$ |
$5.07468$ |
$[0, 0, 0, -1975392, -1069674768]$ |
\(y^2=x^3-1975392x-1069674768\) |
|
$[(81537565713/7067, 2664196565893983/7067)]$ |
51984.bu2 |
51984cc1 |
51984.bu |
51984cc |
$2$ |
$19$ |
\( 2^{4} \cdot 3^{2} \cdot 19^{2} \) |
\( - 2^{12} \cdot 3^{6} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$1.053295306$ |
$1$ |
|
$2$ |
$46080$ |
$0.892304$ |
$-884736$ |
$1.31757$ |
$3.44772$ |
$[0, 0, 0, -5472, 155952]$ |
\(y^2=x^3-5472x+155952\) |
|
$[(57, 171)]$ |
61009.a1 |
61009a2 |
61009.a |
61009a |
$2$ |
$19$ |
\( 13^{2} \cdot 19^{2} \) |
\( - 13^{6} \cdot 19^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$14.76988213$ |
$1$ |
|
$0$ |
$893760$ |
$2.404545$ |
$-884736$ |
$1.31757$ |
$5.04454$ |
$[0, 0, 1, -2318342, -1359997376]$ |
\(y^2+y=x^3-2318342x-1359997376\) |
|
$[(22534096/113, 9651213903/113)]$ |
61009.a2 |
61009a1 |
61009.a |
61009a |
$2$ |
$19$ |
\( 13^{2} \cdot 19^{2} \) |
\( - 13^{6} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$0.777362217$ |
$1$ |
|
$4$ |
$47040$ |
$0.932326$ |
$-884736$ |
$1.31757$ |
$3.44122$ |
$[0, 0, 1, -6422, 198279]$ |
\(y^2+y=x^3-6422x+198279\) |
|
$[(39, 84)]$ |
81225.s1 |
81225p2 |
81225.s |
81225p |
$2$ |
$19$ |
\( 3^{2} \cdot 5^{2} \cdot 19^{2} \) |
\( - 3^{6} \cdot 5^{6} \cdot 19^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$1702400$ |
$2.476097$ |
$-884736$ |
$1.31757$ |
$4.99278$ |
$[0, 0, 1, -3086550, 2089208531]$ |
\(y^2+y=x^3-3086550x+2089208531\) |
|
$[]$ |
81225.s2 |
81225p1 |
81225.s |
81225p |
$2$ |
$19$ |
\( 3^{2} \cdot 5^{2} \cdot 19^{2} \) |
\( - 3^{6} \cdot 5^{6} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$89600$ |
$1.003876$ |
$-884736$ |
$1.31757$ |
$3.43005$ |
$[0, 0, 1, -8550, -304594]$ |
\(y^2+y=x^3-8550x-304594\) |
|
$[]$ |
104329.f1 |
104329a2 |
104329.f |
104329a |
$2$ |
$19$ |
\( 17^{2} \cdot 19^{2} \) |
\( - 17^{6} \cdot 19^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$45.09368903$ |
$1$ |
|
$0$ |
$1672000$ |
$2.538677$ |
$-884736$ |
$1.31757$ |
$4.94961$ |
$[0, 0, 1, -3964502, -3041268597]$ |
\(y^2+y=x^3-3964502x-3041268597\) |
|
$[(2472529015166990726811/782964691, 103590659454310879163376010346748/782964691)]$ |
104329.f2 |
104329a1 |
104329.f |
104329a |
$2$ |
$19$ |
\( 17^{2} \cdot 19^{2} \) |
\( - 17^{6} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$2.373352054$ |
$1$ |
|
$2$ |
$88000$ |
$1.066458$ |
$-884736$ |
$1.31757$ |
$3.42073$ |
$[0, 0, 1, -10982, 443398]$ |
\(y^2+y=x^3-10982x+443398\) |
|
$[(76, 218)]$ |
144400.bs1 |
144400ba2 |
144400.bs |
144400ba |
$2$ |
$19$ |
\( 2^{4} \cdot 5^{2} \cdot 19^{2} \) |
\( - 2^{12} \cdot 5^{6} \cdot 19^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$1$ |
$9$ |
$3$ |
$0$ |
$3830400$ |
$2.619938$ |
$-884736$ |
$1.31757$ |
$4.89627$ |
$[0, 0, 0, -5487200, 4952198000]$ |
\(y^2=x^3-5487200x+4952198000\) |
|
$[]$ |
144400.bs2 |
144400ba1 |
144400.bs |
144400ba |
$2$ |
$19$ |
\( 2^{4} \cdot 5^{2} \cdot 19^{2} \) |
\( - 2^{12} \cdot 5^{6} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$1$ |
$9$ |
$3$ |
$0$ |
$201600$ |
$1.147718$ |
$-884736$ |
$1.31757$ |
$3.40922$ |
$[0, 0, 0, -15200, -722000]$ |
\(y^2=x^3-15200x-722000\) |
|
$[]$ |
159201.t1 |
159201t2 |
159201.t |
159201t |
$2$ |
$19$ |
\( 3^{2} \cdot 7^{2} \cdot 19^{2} \) |
\( - 3^{6} \cdot 7^{6} \cdot 19^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$26.73760462$ |
$1$ |
|
$0$ |
$4012800$ |
$2.644333$ |
$-884736$ |
$1.31757$ |
$4.88082$ |
$[0, 0, 1, -6049638, -5732788210]$ |
\(y^2+y=x^3-6049638x-5732788210\) |
|
$[(90880387533294/87209, 846333021155455519817/87209)]$ |
159201.t2 |
159201t1 |
159201.t |
159201t |
$2$ |
$19$ |
\( 3^{2} \cdot 7^{2} \cdot 19^{2} \) |
\( - 3^{6} \cdot 7^{6} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$1.407242348$ |
$1$ |
|
$2$ |
$211200$ |
$1.172113$ |
$-884736$ |
$1.31757$ |
$3.40589$ |
$[0, 0, 1, -16758, 835805]$ |
\(y^2+y=x^3-16758x+835805\) |
|
$[(57, 256)]$ |
190969.c1 |
190969c2 |
190969.c |
190969c |
$2$ |
$19$ |
\( 19^{2} \cdot 23^{2} \) |
\( - 19^{9} \cdot 23^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$4681600$ |
$2.689819$ |
$-884736$ |
$1.31757$ |
$4.85268$ |
$[0, 0, 1, -7256822, 7531674133]$ |
\(y^2+y=x^3-7256822x+7531674133\) |
|
$[]$ |
190969.c2 |
190969c1 |
190969.c |
190969c |
$2$ |
$19$ |
\( 19^{2} \cdot 23^{2} \) |
\( - 19^{3} \cdot 23^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$246400$ |
$1.217598$ |
$-884736$ |
$1.31757$ |
$3.39981$ |
$[0, 0, 1, -20102, -1098072]$ |
\(y^2+y=x^3-20102x-1098072\) |
|
$[]$ |
207936.cm1 |
207936v2 |
207936.cm |
207936v |
$2$ |
$19$ |
\( 2^{6} \cdot 3^{2} \cdot 19^{2} \) |
\( - 2^{6} \cdot 3^{6} \cdot 19^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$18.66169270$ |
$1$ |
|
$0$ |
$1751040$ |
$2.017952$ |
$-884736$ |
$1.31757$ |
$4.16052$ |
$[0, 0, 0, -493848, -133709346]$ |
\(y^2=x^3-493848x-133709346\) |
|
$[(8569560595/2203, 717189761051209/2203)]$ |
207936.cm2 |
207936v1 |
207936.cm |
207936v |
$2$ |
$19$ |
\( 2^{6} \cdot 3^{2} \cdot 19^{2} \) |
\( - 2^{6} \cdot 3^{6} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$0.982194353$ |
$1$ |
|
$2$ |
$92160$ |
$0.545732$ |
$-884736$ |
$1.31757$ |
$2.71775$ |
$[0, 0, 0, -1368, 19494]$ |
\(y^2=x^3-1368x+19494\) |
|
$[(19, 19)]$ |
207936.dc1 |
207936fk2 |
207936.dc |
207936fk |
$2$ |
$19$ |
\( 2^{6} \cdot 3^{2} \cdot 19^{2} \) |
\( - 2^{6} \cdot 3^{6} \cdot 19^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$1751040$ |
$2.017952$ |
$-884736$ |
$1.31757$ |
$4.16052$ |
$[0, 0, 0, -493848, 133709346]$ |
\(y^2=x^3-493848x+133709346\) |
|
$[]$ |
207936.dc2 |
207936fk1 |
207936.dc |
207936fk |
$2$ |
$19$ |
\( 2^{6} \cdot 3^{2} \cdot 19^{2} \) |
\( - 2^{6} \cdot 3^{6} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$92160$ |
$0.545732$ |
$-884736$ |
$1.31757$ |
$2.71775$ |
$[0, 0, 0, -1368, -19494]$ |
\(y^2=x^3-1368x-19494\) |
|
$[]$ |
283024.bq1 |
283024bq2 |
283024.bq |
283024bq |
$2$ |
$19$ |
\( 2^{4} \cdot 7^{2} \cdot 19^{2} \) |
\( - 2^{12} \cdot 7^{6} \cdot 19^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$120.8703090$ |
$1$ |
|
$0$ |
$9028800$ |
$2.788174$ |
$-884736$ |
$1.31757$ |
$4.79461$ |
$[0, 0, 0, -10754912, -13588831312]$ |
\(y^2=x^3-10754912x-13588831312\) |
|
$[(1719678267723221133136862781045606108755651271997455001/21300526428328747357173448, 95526073073240707615222864867520045167952885949936225805875911012902266761301821/21300526428328747357173448)]$ |
283024.bq2 |
283024bq1 |
283024.bq |
283024bq |
$2$ |
$19$ |
\( 2^{4} \cdot 7^{2} \cdot 19^{2} \) |
\( - 2^{12} \cdot 7^{6} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$6.361595210$ |
$1$ |
|
$0$ |
$475200$ |
$1.315954$ |
$-884736$ |
$1.31757$ |
$3.38728$ |
$[0, 0, 0, -29792, 1981168]$ |
\(y^2=x^3-29792x+1981168\) |
|
$[(6441/8, 24149/8)]$ |
303601.f1 |
303601f2 |
303601.f |
303601f |
$2$ |
$19$ |
\( 19^{2} \cdot 29^{2} \) |
\( - 19^{9} \cdot 29^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$40.04991224$ |
$1$ |
|
$0$ |
$9576000$ |
$2.805717$ |
$-884736$ |
$1.31757$ |
$4.78464$ |
$[0, 0, 1, -11536838, -15097394628]$ |
\(y^2+y=x^3-11536838x-15097394628\) |
|
$[(520175977003829094225/194362474, 11461789007997141988823598439517/194362474)]$ |
303601.f2 |
303601f1 |
303601.f |
303601f |
$2$ |
$19$ |
\( 19^{2} \cdot 29^{2} \) |
\( - 19^{3} \cdot 29^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$2.107890118$ |
$1$ |
|
$0$ |
$504000$ |
$1.333500$ |
$-884736$ |
$1.31757$ |
$3.38513$ |
$[0, 0, 1, -31958, 2201107]$ |
\(y^2+y=x^3-31958x+2201107\) |
|
$[(-551/2, 15975/2)]$ |
346921.c1 |
346921c2 |
346921.c |
346921c |
$2$ |
$19$ |
\( 19^{2} \cdot 31^{2} \) |
\( - 19^{9} \cdot 31^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$1$ |
$4$ |
$2$ |
$0$ |
$11673600$ |
$2.839066$ |
$-884736$ |
$1.31757$ |
$4.76598$ |
$[0, 0, 1, -13182998, 18441366327]$ |
\(y^2+y=x^3-13182998x+18441366327\) |
|
$[]$ |
346921.c2 |
346921c1 |
346921.c |
346921c |
$2$ |
$19$ |
\( 19^{2} \cdot 31^{2} \) |
\( - 19^{3} \cdot 31^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$1$ |
$4$ |
$2$ |
$0$ |
$614400$ |
$1.366844$ |
$-884736$ |
$1.31757$ |
$3.38110$ |
$[0, 0, 1, -36518, -2688638]$ |
\(y^2+y=x^3-36518x-2688638\) |
|
$[]$ |
393129.bl1 |
393129bl2 |
393129.bl |
393129bl |
$2$ |
$19$ |
\( 3^{2} \cdot 11^{2} \cdot 19^{2} \) |
\( - 3^{6} \cdot 11^{6} \cdot 19^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$25.15342195$ |
$1$ |
|
$0$ |
$14470400$ |
$2.870323$ |
$-884736$ |
$1.31757$ |
$4.74884$ |
$[0, 0, 1, -14938902, -22245892441]$ |
\(y^2+y=x^3-14938902x-22245892441\) |
|
$[(14154605818761/54797, 18086295418469619782/54797)]$ |
393129.bl2 |
393129bl1 |
393129.bl |
393129bl |
$2$ |
$19$ |
\( 3^{2} \cdot 11^{2} \cdot 19^{2} \) |
\( - 3^{6} \cdot 11^{6} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$1.323864313$ |
$1$ |
|
$4$ |
$761600$ |
$1.398106$ |
$-884736$ |
$1.31757$ |
$3.37740$ |
$[0, 0, 1, -41382, 3243314]$ |
\(y^2+y=x^3-41382x+3243314\) |
|
$[(114, 85)]$ |
442225.bq1 |
442225bq2 |
442225.bq |
442225bq |
$2$ |
$19$ |
\( 5^{2} \cdot 7^{2} \cdot 19^{2} \) |
\( - 5^{6} \cdot 7^{6} \cdot 19^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$17556000$ |
$2.899746$ |
$-884736$ |
$1.31757$ |
$4.73300$ |
$[0, 0, 1, -16804550, 26540686156]$ |
\(y^2+y=x^3-16804550x+26540686156\) |
|
$[]$ |
442225.bq2 |
442225bq1 |
442225.bq |
442225bq |
$2$ |
$19$ |
\( 5^{2} \cdot 7^{2} \cdot 19^{2} \) |
\( - 5^{6} \cdot 7^{6} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$924000$ |
$1.427525$ |
$-884736$ |
$1.31757$ |
$3.37399$ |
$[0, 0, 1, -46550, -3869469]$ |
\(y^2+y=x^3-46550x-3869469\) |
|
$[]$ |
494209.i1 |
494209i2 |
494209.i |
494209i |
$2$ |
$19$ |
\( 19^{2} \cdot 37^{2} \) |
\( - 19^{9} \cdot 37^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$48.45663009$ |
$1$ |
|
$0$ |
$19753920$ |
$2.927528$ |
$-884736$ |
$1.31757$ |
$4.71831$ |
$[0, 0, 1, -18779942, -31355460662]$ |
\(y^2+y=x^3-18779942x-31355460662\) |
|
$[(3342582640749438886885729/4556038962, 6108917671658029629966739058419064659/4556038962)]$ |
494209.i2 |
494209i1 |
494209.i |
494209i |
$2$ |
$19$ |
\( 19^{2} \cdot 37^{2} \) |
\( - 19^{3} \cdot 37^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$2.550348952$ |
$1$ |
|
$0$ |
$1039680$ |
$1.455311$ |
$-884736$ |
$1.31757$ |
$3.37082$ |
$[0, 0, 1, -52022, 4571433]$ |
\(y^2+y=x^3-52022x+4571433\) |
|
$[(4921/6, 25903/6)]$ |